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Géraud Le Falher geraud.lefalher@aalto.fi

Student number 336 978

Abstract

After looking at the dataset of handwritten
characters, I examine the effect of supervised
(LDA) and unsupervised (PCA) dimensional-
ity reduction. Then I used supervised classifi-
cation, either with generative (naive Bayes) or
not (logistic regression, SVM) model, which
give respectively 66.2%, 69.8% and 89.5% of
accuracy.

1. Dataset

The training dataset consists of 42,152 handwritten
characters, each represented by a binary matrix with
8 columns and 16 rows. Each 1 maps to a white pixel
and each 0 to a black one, thus we can visualize some
of them1 to get a sense of what they may look like,
like in Figure 1. We can also look at the frequency of
each letter in the Table 1. It shows us that the corpus
does not follow the relative frequencies of letters in the
English language because for instance, there is more N
than E.

After making these observations, I tried to apply advice
given in Chapter 11 of Alpaydin’s book (Alpaydin,
2009), relative to the preprocessing of characters. But
they are already in the center of each picture, and
scaled to occupy all the possible space. What could
maybe be improved is their rotation but it sounds like
a daunting task and apart from that, the dataset is
of an excellent quality. So the only thing I did was
to convert the text file to MATLAB binary format in
order to speed-up subsequents loadings.

1I adapt some code of the ml-class courses of Prof. Ng

Figure 1: A hundred characters from the training set

2. Dimensionality reduction

2.1. Linear Discriminant Analysis

I started with linear discriminant analysis because as a
supervised method, it seems more promising. For each
class, I computed the within class scatter matrix:

SW =

K∑

i=1

Si

where Si is the covariance matrix of all the x which
belongs to class i and mi is their mean:

Si =
K∑

i=1

rti(x
t −mi)(x

t −mi)
T



Characters classification

(a) The first 48 characters
of the training set.

(b) Their reconstruction in
a 25 dimension space.

Figure 2: Before/After comparison of LDA reduction

and the between class scatter matrix:

SB =

K∑

i=1

Ni(mi −m)(mi −m)T

where Ni is the size of class i and m the mean of all
mi

Then I get the projection matrix on a subspace of
dimension d by taking the first d largest eigenvectors
of S−1

W SB with the constraint that d < K, because the
rank of SW is at most K. But the reconstruction was
visually blurry (see Figure 2) so I decided to try PCA
instead, while later tests show me that it was a wrong
assumption.

2.2. Principal Components Analysis

PCA is an unsupervised method which consists of build-
ing the projection matrix by taking the first d largest
eigenvectors of the covariance matrix S, after having
centered the data and normalized the variances, which
can be done with the MATLAB function zscore. Al-
paydin suggests that we can still use the label informa-

A B C D E F G
2958 860 1706 880 3763 723 2239

H I J K L M N
623 3953 189 817 2275 1416 4353

O P Q R S T U
3440 1283 140 2351 1090 1594 2258

V W X Y Z
664 140 413 1033 991

Table 1: Letters frequencies in the training dataset

tion by using the sum of the covariance matrix of each
class weighted by their estimated probability:

S =
K∑

i=1

P̂ (Ci)Si

I did that and it effectively provides a minor improve-
ment in terms of proportion of variance explained, as
shown in Figure 3.
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Figure 3: Using label information leads to a (little)
more efficient selection of eigenvectors

The reconstruction was also more appealing visually,
as shown in Figure 4.

3. Naive Bayes classifier

Because after the dimensionality reduction, each fea-
ture seems to approximatively follow a normal distri-
bution (see Figure 5), I decided to start with a naive
Bayes classifier. Of course, it requires to verify these
assumptions afterward but as it is easy to implement
and very fast to train, it sounds like a good baseline.

Basically, we suppose that p(x|Ci) ∼ Nd(µi,Σi)
so the discriminant function for class i is gi(x) =
log(p(x|Ci)) + log(P (Ci)) and when we plug the usual
estimators

mi =
1

N

N∑

t=1

xti and

si,j =
1

N

N∑

t=1

(xti −mi)(x
t
j −mj)

T



Characters classification

(a) 100 characters after
zscore.

(b) Their reconstruction in
a 63 dimension space.

Figure 4: Before/After comparison of PCA reduction

we get

gi(x) = wi
Tx+ wi0 with

wi = S−1mi and

wi0 = −1

2
mT

i S
−1mi + log(P̂ (Ci))

The result were not very good because this method
computes Kd(d + 1)/2 = 54,080 parameters with a
dimensionality reduced to 642 by PCA whereas there
is only 42,152 samples and even less in cross-validation.
So I wrote the covariance matrix in the form

S∗
i = ασ2I + βS + (1− α− β)Si with

S =
K∑

i

P̂ (Ci)Si

and performed a grid search with 4-fold cross validation
to find optimal α and β, namely 0 and 1.

To find the best parameter d of PCA reduction, I did a
5-fold cross validation with several values and it turns
out that the accuracy reaches a maximum of around
69.1% for d = 63 and then becomes somewhat flat (see
Figure 6). It appears that this generalization accuracy
is rather optimistic because on the test set, the accuracy
is only 66.2%.

I earlier mentioned that I discarded LDA whereas it
was not as bad as it looks and indeed, we can see in
Figure 7 that naive Bayes classifier performs almost as
well with only 11 features generated by LDA.

2Number chosen because it captures 85% of the variance.

−2 −1 0 1
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fitted normal distribution

Figure 5: Distribution of the 28th feature given by
PCA.

To summarize, while naive Bayes’ approach is easy to
implement and takes less than a second to be trained
and to give a prediction, it does not yield very good
results. It is probably because its primary assump-
tion, the “normality” of data, does not hold in a 63-
dimensional space with 26 classes. Of course, we could
try to use a better generative model in the form of
mixture of gaussians but that seems more complicated.

4. Logistic regression

Because doing a full density estimation could be chal-
lenging in a high dimensional space and also because
it is not required to do the classification, I then tried
a linear discrimination classification using the sigmoid
function. As seen in exercise session 5, with two class,
we could write the log-likelihood as:

L =
N∑

t=1

(
rt log yt + (1− rt) log(1− yt)

)
− λ

∣∣∣∣wT
∣∣∣∣2

with

yt = sigmoid(wTxt) =
1

1 + exp(−wTxt)

and where λ is a regularization parameter that en-
sures that w does not become too large in order to
accommodate for the training set and thus be prone to
overfitting.

There is no analytical solution for w so we need a
gradient based method in order to optimize it. Since I
found a minimization function on internet3, I computed

3by Carl Edward Rasmussen.
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Figure 6: Accuracy of naive Bayes with respect to the
number of PCA dimensions retained.
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Figure 7: Accuracy of naive Bayes with respect to the
number of LDA dimensions retained.

−L and its gradient:

− ∂L
∂wi

= −
N∑

t=1

(
xti(r

t − sigmoid(wTx)
)

+ 2λw

Then I trained a classifier for each class against all the
other. At the prediction step, each sample is affected
a probability to belong to each class via the sigmoid
function and the greatest one is selected.

I have done a 4-fold cross validation to find the parame-
ter λ and it finally give an accuracy of about 76.3% for
λ = 10−2, see Figure 8. But it degrades when I do PCA
before so I used the training data untouched. I have
not had time to see if training K(K + 1)/2 pairwise
classifiers would give better results, but that sounds
promising because it is more likely that two classes
are linearly separable compared with one class against
twenty five others. Again, this generalization accuracy
was optimistic and I only get 69.8% accuracy on the
test set.

Compared with naive Bayes’ approach, logistic regres-
sion has the advantage of making less assumptions on
the data. And obviously, its results are somewhat bet-
ter. Yet, it suffers from longer training time (mainly
because of the iterative optimization phase) and it is
still a linear model.
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Figure 8: Accuracy of logistic regression with respect
to λ.

5. SVM

Assume that we have two classes labeled by +1 and −1.
The idea in SVM is to find w and w0 such that for all
points in our set X = {rt, xt}t=1...N , rt(wTxt+w0) ≥ 1
holds. The distance to discriminant is
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rt(wTxt + w0)

||w|| ≥ ρ

so we want to maximise ρ s.t. ρ ||w|| = 1 i.e. minimize

||w||2 /2. But to handle non linearly separable cases, we

add a “soft error” C
∑N

t=1 ξ
t so that the classification

condition is now written as

rt(wTxt + w0) ≥ 1− ξt

meaning that ξt = 0 for points far enough from the
margin, ξt ∈]0, 1] for those which are well classified but
lied in the margin and ξt > 1 for the misclassified ones.

So we write the problem in its Lagrangian form

Lp =
1

2
||w||2 + C

N∑

t=1

ξt −
N∑

t=1

µtξt−

N∑

t=1

αt
(
rt(wTxt + w0)− 1 + ξt

)

and we want to minimize Lp w.r.t w, w0 and maximise
it w.r.t αt, s.t αt ≥ 0 and µt > 0.

Then we take the dual problem of maximising Lp w.r.t
αt s.t. ∇Lp = 0 and αt ≥ 0. Setting the derivative of
Lp w.r.t w to 0 yields

w =

N∑

t=1

αtrtαt (1)

and w.r.t w0:
∑N

t=1 α
trt = 0. Finally ∂Lp/∂ξ

t =
C − αt − µt = 0 ⇔ 0 ≤ αt ≤ C. The problem is now
to minimize4

Ld = −1

2
wtw +

N∑

t=1

αt

= −1

2

N∑

t=1

N∑

s=1

αtαsrtrs(xt)Txs +

N∑

t=1

αt

s.t.
∑N

t=1 α
trt = 0 and 0 ≤ αt ≤ C

The few samples for which αt > 0 are called support
vectors and define w according to (1). Those satisfying
rt(wTxt + w0) = 1 and αt < C are on the border and
defines w0. C is a regularisation parameter representing
a trade off between a minimal error on the training
set and a maximum margin separation. If it is set too
large, its high penalty will lead to a lot of support
vector, meaning overffiting. Yet, if it is too small, the
model is to simple and underfits the training set.

4Because other terms cancel out

The flexibility of SVM comes from the fact that we can
replace the term (xt)Txs by a custom kernel K(x, y)
that should be large when x and y are “similar”. One
popular choice that I have adopted is the radial basis
function

K(x, y) = exp
− ||x− y||2

2σ2

which introduce a new parameter, σ2.

By doing a cross-validated grid search to find σ2 and
C, I get σ2 = 10.8 and C = 5 (see Figure 9, which
give a 89.89% generalization accuracy. On the test set,
it turns to be 89.50%. Nonetheless, these results are
still much better than with the two previous methods.
Another advantage of SVM is that they may be im-
proved by using a more appropriate kernel to compare
structured images than a simple euclidean distance.
But they also come at the price of much longer training
and testing times. And more importantly, the opti-
mization problem have analytical solution but they
are intractable due to the size of the N × N Gram
matrix K = [K(xi, xj)]i,j , which holds more than 1.7
million elements in our case. So one have to rely on
sophisticated numerical method described in theses pa-
pers (Joachims, 1999; Fan et al., 2005). And because I
thought it would be too difficult, I download the lib-
SVM package, which take only two lines of MATLAB
but seven minutes of training on my laptop.
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Figure 9: 3-fold cross-validated grid search.
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6. Comments on the project

Overall, I found this project stimulating and it was
interesting to see a real world application of the ma-
terial presented in the course. My main difficulty was
that during a long time in the beginning, I was a little
bit lost at the number of available methods to tackle
the problem, so I pondered a lot instead of trying one
of them. When I started writing code, it feels better.
I have not really kept track of the time spent on the
project, but a rough estimate would be twenty hours. I
could probably have been faster by spending less time
writing this report, but it was a valuable LATEX expe-
rience!
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T-61.5130 Computer Assignment
ICA for Image Feature Extraction

Géraud Le Falher, 336 978

January 30, 2013

1 Artificial data

To get acquainted with the fastICA package, I started by mixing 4 simple unidimensional signals ; sinus, sawtooth,
Gaussian white noise and Laplacian white noise:

s1(t) = sin(
2πt

0.5
) + N (0, 0.15)

s2(t) = 2

(
t

a
−

⌊
1

2
+

t

a

⌋)
+ N (0, 0.15)

s3(t) = N (0, 1)

s4(t) = Laplace(0, 1)

using the following mixing matrix:

A =




4.72 1.13 2.16 2.53
4.94 2.23 1.30 1.62
2.05 1.33 0.67 3.42
1.86 2.29 2.10 2.21




As its name implies, fastICA quickly gives good results, once the recovered signals are properly ordered and scaled.
To automate this process, I wrote a function that pairs signals (x, ŝ) based on their root mean squared difference by
computing a scaling factor α to minimize it, according to:

RMSE =
N∑

i=1

(x(ti) − αŝ(ti))
2

∂RMSE

∂α
= 2

N∑

i=1

ŝ(ti) (x(ti) − αŝ(ti)) = 0

α =

∑N
i=1 x(ti)ŝ(ti)∑N
i=1 ŝ(ti)ŝ(ti)

Aer this step, there is a very good correspondence between original signals and the ones returned by fastICA() at
least visually, as shown in Figure 1 next page. But of course, we could alsomake some numericalmeasurements.
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Figure 1: In each case, the original signal is in blue and the recovered points are the black crosses.



option Sinus Sawtooth Normal Laplace

default 6.140·10−3 2.360·10−3 8.459·10−3 1.201·10−2

symm 1.121·10−2 4.542·10−3 1.545·10−2 1.313·10−2

stabilization 6.140·10−3 2.361·10−3 8.457·10−3 1.201·10−2

g = tanh 2.934·10−3 2.351·10−3 8.780·10−3 1.118·10−2

g = gauss 6.782·10−3 5.365·10−3 9.928·10−3 1.008·10−2

Table 1: Effect of different options on the rmse of the four recovered signal.

Distribution N (0, 1) Exp(1) F (5, 4) Gamma(5, 10) U(0, 1) t(5)

RMSE ×10−3 3.332 13.34 0.2998 1.332 2.744 2.551

Table 2: Error on various distribution

Next, I tried to see how some of the parameters of fastICA() affect the result, compared with the default options.
First, instead of estimating independent components one by one, one can use a symmetric approach. One can also use
a stabilized version of the algorithm. Finally, instead of the default cubic nonlinearity, which is not robust, I used the
hyperbolic tangent and a gaussian function. Overall, the results are of the same order of magnitude, as shown in Table
1. Specifically, stabilization seems to have almost no effect over the four chosen signals, symmetric is clearly a worse
approach, and tanh() appears to be the best nonlinearity. We may also note that the Laplacian distribution is less
sensitive to the choice of options than the others.

We may ask ourselves another question: does the default method provide the same accuracy with different kind of
signals? For that, we can replace the Laplacian noise with another distribution (namely the Exponential distribution,
the F-distribution, the Gamma distribution, the Uniform distribution, and the Student's t-distribution in the Table 2).
But overall, that does not seem to be of a paramount effect.

2 Images of natural scenes

Figure 2: A natural scene represented in grayscale as a 256×512 matrix of intensity values.

In this second part, given photos like the one in Figure 2, we want to find independent components in it in order to
compress its representation. Indeed, we can approximate the value of each pixel (x, y) as a sum of basis function ai

scaled by a coefficient si, as in equation 1, which could also be wrien under the familiar form x = As. In this case,
picture's matrix is flaed to fit them in an one dimensional vector, and the ith column of A represents the basis picture
ai.

I(x, y) =

n∑

i=1

siai(x, y) (1)

Ideally, only a few basis should be activated at the same time, meaning that a given neuron is activated rarely, which
also implies that the distribution of the si is sparse. Because sparseness could be seen as super gaussianity, maximizing
sparseness is done bymaximizing non gaussianity, thus justifying the choice of the ICAmethod.

3



On a practical point of view, we start by removing the mean of each picture and divide it by its estimated deviation, using
thezscore function ofMATLAB.en, becauseworking on the full pictureswould be to resource expensive, we extract
N square-shaped patches of size w×w (see Figure 4a p. 5). We also remove their local mean, since it would yield a sub-
gaussian component during ICA (see Figure 4b). Finally, we reduce their dimension from w×w to 169 using PCA to re-
duce the noise and we run fastICAwith tanh nonlinearity to get A and s (see listing 1).

Listing 1: Features extraction
close all;
clear all;
images = load_images('images/nat*.tif');
% normalize images
for i=1:numel(images)

images{i}=zscore(single(images{i}));
end
% get patches
window = [16 16];
numpatches = 10000;
patches = sample_patches(images, window, numpatches);
% remove its local mean to each patch
localMeans = reshape(mean(mean(patches)), 1, numpatches);
X = reshape(patches, prod(window), numpatches) - repmat(localMeans, prod(window), 1);
% Try to reduce noise with PCA
C = pca(X','NumComponents', 169);
% Compute basis pictures of the reconstructed version of X
[s, A, W] = fastica(X'*C*C');

eoretically, it is supposed to produce basis that share some characteristics with Gabor wavelet, which consist of a
sinusoidal carrier multiplied by a Gaussian envelope, as visualized in Figure 3. But unfortunately, with N =10 000 and
w = 16, it failed to produced the expected results. Indeed, the basis patches look much more like random noise, like
shown in Figure 4c, compared with the expected Figure 4d.

(a) × (b) = (c)

Figure 3: e real part of a Gabor wavelet is the product of a sinusoidal carrier and a Gaussian envelope.

We can also take a look at the recovered coefficients (see Figure 5 p. 6). In the first case (5a), the sparseness of the
distribution of the si is prey clear, but is still visible even when using PCA (5b and 5c). Yet, because they can peak at
any point, we cannot be sure that there is no higher-order correlation between them. ere will then be some “group”
of components that will be activated around the same point.

Finally, we can take an interest in the influence of each basis image, by convolving it with a full picture, as in Figure
6a p. 6. e bright areas show where the paern is activated. For the sake of completeness, I also used one of the
columns of A but as one may have expected, it only produced a blurry version that does not convey any meaning
(Figure 6b).
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(a) 100 original patches chosen randomly.
(b) e same patches as in Figure 4a aer reduction and reconstruc-

tion.

(c) 100 columns of A chosen randomly.
(d) Basis obtained from similar sources as shown in the exercise

session.

Figure 4: Different kind of picture patches.
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(c) Same with N = 10, 000 and 169-PCA.

Figure 5: Two randomly chosen independent component ploed under various seings.

(a) e picture of Figure 2 aer a convolution with a smaller ver-
sion of the paern in Figure 3c. (b) Same operation using a column of A.

Figure 6: Convolution of image with a basis.
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3 Images of building

Figure 7: e main building of the campus.

is time, we use another set of images depicting various building around Otaniemi, like the one in Figure 7. Of course,
the mathematics does not change with the semantic of the picture so, without surprise, the same approach gives the
same – bad – results.

7



Signed network analysis

Géraud Le Falher
Sanja Šćepanović

Aalto University

Abstract. We investigate current work on signed network: sociology
models, computers science empirical and theoretical research and edge
sign prediction methods. Comparison and analysis of the existing models,
such as balance and status theory, are provided first. After that, another
viewpoint to possible modeling of signed network is given. Finally, we
experiment on the task of edge prediction using varety of machine learning
methods. To the best of our knowledge, the results using logistic regression
based on the number of 4-cycles are better than the result of any of the
reported predictions so far: above 98% accuracy with no more than 20%
false positive rate.

Keywords: signed network, data mining, sociology theory of balance,
link prediction

1 Introduction

Social network analysis is a popular recent research topic among scientists coming
from different fields. One aspect of this topic, however, still has not received
enough attention – analysis of networks with signed edges. We may not only
be connected or not to other people, but we often have positive or negative
sentiment attached to our relationship. Similar holds for our attitude towards
certain products or services. Examples of online social networks, where such
property of relationships is explicitly visible are Epinions, Slashdot, YouTube etc.
In those network, people may tag each other as friends or foes, as trustworthy or
not, or they my like or dislike a video. In some other online networks, we can
infer implicit positive or negative relationship; for instance, Wikipedia admin
selection network. In this case, the Wikipedia contributors vote for or against
each other being promoted. Thus, it is important to analyse how could the
positive/negative relationship in those network be modeled and to find possible
explanations coming from sociology or psychology. In this paper, we build on the
previous such work, by improving the suggested models first, and then we also
present an improved result of the edge sign prediction based on our suggested
model.



2 Related work

In this section we make an overview of the current work on signed network. First,
we focus on the theories from sociology used to model signed network properties
(2.1), and after that we look into computer science research on the topic (2.2).

2.1 Theories from Sociology

After the seminal work in psychology and sociology by Heider [8], Cartwright
and Harary [2] have generalized the structural balance theory in graph-
theoretic language. The structural balance theory suggests that people tend to
form relationships in a way that preserve social balance. The social balance
requirement can be simply put by these four statements:

1. ”a friend of my friend is my friend”,
2. ”an enemy of my friend is my enemy”,
3. ”a friend of my enemy is my enemy” and
4. ”an enemy of my enemy is my friend”.

In terms of signed networks, these requirements forbid triangles with exactly
one negative or with all three negative edges. Davis [4] has proven, using graph-
theoretic language, that, when the balance theory holds in a network, we then
observe polarization, i.e., the network clusters into two opposite poles. The people
in one pole will have positive relationships among themselves, while all the edges
between the two poles will be negative.

The described theory of balance, requiring the above presented four statements
to hold in social relationships, is also called strong structural balance theory.
That is because, in the later years, Davis [4] has shown that if we omit the last
statements from the requirements (”an enemy of my enemy is my friend”), the
theory will better correspond to the situation we meet in real world networks. If we
keep only the first three statements, then we talk about Davis’ weak structural
balance theory. On a global level, this theory predicts the formation of a larger
number (not only two) of clusters in the network, a situation more often observed
in reality. Talking in terms of graphs, the weak structural balance theory just
disallows the triangles which have exactly one negative edge. In fact, Davis has
proven that such requirement in a network is equivalent with the network having
a set of clusters such that all the intra-cluster edges are positive and all the
inter-cluster edges are negative.

2.2 Computer Science empirical research

One of the first papers in the field by Kunegis et al. [9], mines Slashdot data in
order to give notion of basic network properties in the case of a signed network.
The authors present signed variants of clustering coefficient, centrality, distances
and similarity measures. The task of predicting sign of edges is as well tackled.

Building on the theories from sociology described above, Leskovec et al. [11]
analyse three online social networks with signed edges: Epinions, Slashdot and



Wikipedia admin selection network. Since the structural balance theories are
defined in terms of relationships between three people, their empirical evaluation
involved counting different types of triads (triangles) in the network, as shown in
Figure 1. Out of possible 4 types of triads, the authors find that the triad type
with exactly one negative edge (T2) is constantly underrepresented in the real
data. However, the triad type with three negative edges (T0) is considerably more
represented than would be expected if the strong balance theory holds. Thus
the authors conclude that the weak structural balance theory suggested by Davis
models the real networks better than the strong balance theory.

+ +

+

+ +

-

- -

+

- -

-
Mutual friends Antagonist friendsCommon enemy Mutual enemies

Balanced

Weakly Balanced

Fig. 1: The four undirected types of triads considered by the structural balance
theories.

Since the balance theory does not take into consideration the edge direction,
when it comes to directed edge network, the authors turn developing their own
idea for a status theory, which can explain different level of trust (or status)
users enjoy. When working with this theory, the number of different types of
triads to count is 16, as shown in Figure 2. The status theory does not correspond
to theories from sociology and is considerably less intuitive. It also leaves some
level of ambiguity for characterizing certain types of triads as we explain in detail
later in section 3.

In the follow up work [10], the authors perform edge sign prediction based on
the previously described models of signed network. The accuracy above 90% is
achieved on two of the network, and somewhat lower for Wikipedia (80%).

In an earlier work on trust propagation [7], Guha et al. have included
implicit notion of status theory as formalized later in the described work by
Leskovec et al. They approach ultimately the same goal of predicting sign of
edges in a network, but using different perspective. Guha et al. report prediction
accuracy above 93% in the best case. In this paper, the problem is tackled starting
from local atomic propagations, and then analysing possible iterative propagation
outcomes. In comparison to the approach by Leskovec et al., where only local
properties of the network seem to be considered (types of triangles), Guha et al.
look more into the global structure of the network and diffusion of trust as a
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Fig. 2: The 16 types of triads described by the status theory.

process on it. Depending on the trust propagation scheme that is chosen, this
paper offers couple of stationary trust states. The authors leave the possibility
that a different propagation scheme might be applicable for a different actual
network.

Another global approach build upon the k-clustered structure of a weakly
balanced network. The adjacency matrix A of such a network can be thought
as a partial observation of the underlying adjacency matrix A? of the complete
graph, which is of rank k [see 3, Theorem 13]. The idea is then to estimate A?

from A in order to predict the sign of unobserved edges. Because k is assumed
to be small compared to the number of nodes, [3] suggest to minimize the rank
of X, a binary matrix which must match all non-zero (i.e., observed) entries
of A. It is a NP-hard problem in the general case, but it has been extensively
studied in the context of collaborative filtering. Therefore, several relaxations
and optimization strategies are proposed, that yield good accuracy (88% on the
Wikipedia network) despite significantly lower training time compared to local
methods [see 3, Tables 6 and 7].

In the paper [13], besides simple signed network properties, the authors
exploit homophily between individuals in order to improve trust prediction. The
proposed framework is named hTrust. For measuring the homophily effect, the
rating similarity for two users defined as the cosine between their ranking vectors
is used.



dataset # nodes # edges # positive edges # negative edges # triads

Wikipedia 7115 103,680 81,696 21,984 790,490
Epinion 131,828 840,799 717,129 123,670 13,317,672
Slashdot 82,140 549,202 425,072 124,130 1,508,105

Table 1: Statistic on 3 datasets.

Finally, this global structure of neighboring individuals striving to reach a
state of minimum unbalance trough interactions suggest a physical interpretation.
Although the field of sociophysics may sound controversial1, many articles in
prestigious publication have touched the problem, for instance by applying the
Ising spin model to efficiently compute global balance of large networks [5] or
trying to find local minima of the social energy [1, 12]. Unfortunately, if it
provided insights on the structure, it does not give explicit method to perform
sign prediction.

3 Models for signed network

In this section, first we analyse and compare the existing models for signed
network 3.1, and after that we talk about possible directions for improvement
of the models 3.2. During the evaluation, we use the same datasets as in the
described related work: Epinions, Slashdot and Wikipedia admin selection dataset.
The statistics about all the 3 dataset is given in table 1.

3.1 Comparison and discussion on the existing models

As we mention in the Related Work section 2.2, the task of modeling signed
network is tackled from two different perspectives so far:

1. global perspective: starting from local atomic propagations, and then analysing
possible iterative propagation outcomes through the whole network [7], and

2. local perspective: only local properties of an edge are used to describe it’s
sign [11].

Coming from the knowledge of many existing sociophysics models, where
it has been shown that the complex systems behavior and properties can be
modeled successfully by starting from a simple set of local rules of interaction, we
think that the local perspective possibilities for signed network at least deserve
to be fully analysed.

The balance and status theories certainly show a good level of applicability
to the signed network datasets taken as a representation of social interaction.

1 One is quick to see himself as the Dr. Seldon in Isaac Asimov’s Foundation Series
and predict the result of the next election or where the next terrorism attack will
take place.



However, none of the theories manages to explain all the aspects of the two
network that we find in real data. The balance theory cannot, in its simple form,
be applied for the directed network. The theory yields a good prediction for a
certain undirected triad type, which can, however, be improved a lot if we take
into consideration the 4 possible directed triads that correspond to the same
type. We illustrate this through Figure 3 (balanced triad T3 with all positive
edges) and Figure 4 (resulting 4 directed triads corresponding to T3). Namely, the
balanced triad T3 is indeed more represented in all the datasets, as the balance
theory predicts. However, if break down the triads according to edge directions
into: t6, t8, t14 and t16 — then in the triad of the type t8, we are actually more
likely to find negative third edge than expected. Thinking in terms of status, the
node U is indeed more likely to think of itself having a higher status than V due
to transitivity of status from V over X to itself. So, if the edge direction would
be as in t8, the undirected triad with 1 negative and 2 positive edges is actually
more likely than the triad with all 3 positive edges. From this simple example,
we see the power of status theory and the need for taking edge direction into
account.

Fig. 3: T3: The undirected balanced triad with all positive edges.

U X
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+
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t14: A+ ·A+
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+
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t16: A+ · (A+)T

Fig. 4: t6, t8, t14, t16: The directed triads of the same balance type as T3 in
Figure 3.

The status theory, on the other hand, is not as intuitive as the balance theory.
It also leaves a level of ambiguity, as we present in the next example. For the triad
type t16 in Figure 4, the status theory described in [11] actually gives different
prediction for the edge UV sign, depending whether we take the viewpoint of U
(generative surprise), or the viewpoint of V (receptive surprise). We think that a



good theory would need to provide a unique answer in such case, perhaps taking
into account more information, that might be needed.

3.2 Analysis on the possible improved models

In order to better understand the principles that lead different directed triad
types to be more frequent in real datasets than would be in the random networks,
and to seek for information that can give us theory with a better level of certainty,
we looked into following statistics. For each of the triad types, we calculate the
average popularity of nodes U and V , the directed link between whom we are
evaluating. The popularity of a node we define to be the difference between
positive in degree and negative indegree for the node. As shown in the plots in
Figure 5, in the case of certain triad types, node U is more likely to have higher
popularity than the node V , and vice versa. Even though the pattern is visible
the best in the case of Wikipedia, the similar relationship between the popularity
of the nodes U and V in different triad types we find in the other two network
as well.

Fig. 5: The average popularity of node U (in red) and node V (in blue) for
different directed triad types from Figure 2 (t1 — t15).

Now we turn to evaluating similar type of statistics for the number of directed
4-cycles (we will refer to those as quads). Namely, in the same way as the triad
contexts for each edge may be counted, we can see in how many out possible 64
directed 4-cycles, an edge is involved. It turns out that we find similar, perhaps
more clarified situation compared to triads. In figure 6 we show ranks of the
nudes involved in different quads (directed 4-cycles). For simplicity, we do not
draw the possible 4-cycles. Another statistics that we are interested is to see the



percent of different quad types found in the dataset, and the percent of closing
positive edges. Again for the case of Wikipedia, the result is shown in Figure 7.
It is clear how certain positive types of quads are many more times found in the
dataset. It is also clear that a certain (smaller) number of quad types is much
more likely to have negative closing edge sign.

Fig. 6: The average popularity of node U (in red) and node V (in blue) for
different directed quad types.

4 Edge sign prediction

In this section, we first describe the machine learning methods that we use in the
edge sign prediction task (4.1). After that, we present results of our experiments
(4.2).

4.1 Descritpion of the machine learning methods

We use supervised method for which we perform the feature extraction phase as
follows. We considered three type of feature for each edge: degree information
of its node, embededness and triads count. It can be done by building the
graph in memory and iterating over all edges or by looking at the adjacency
matrix A, which possibly allow to take longer cycle into account more efficiently.
Namely the sign of edge (i, j) is just Ai,j . Then we construct two adjacency
matrix corresponding to the positive and negative subgraph A+ = max(0, A)
and A− = −min(0, A). We use them for the degree’s feature d+in(j), d−in(j),
d+out(i) and d−out(i) (e.g. d+out(i) =

∑
j A

+
i,j). Then we consider k-cycle of the form



Fig. 7: The (ordered) quads percentage in the dataset (red) and the percent of
closing positive edge for each quad (blue).

i x1 . . . xk−2 j
± ± . For each of the 4k−1 of them, we want to count in

how many the edge (i, j) is involved. It is done by considering the systematic
power of the adjacency matrices of the form C = (As1)d1 × · · · × (Ask)dk , where
the sign vector is s ∈ {−,+}k and the direction vector is d ∈ {1, T}k (here T
is the transposition operation). The seeked number of cycle is then Ci,j . For

instance, when k = 3 and we are looking for triad t7 ( i x1 j
+ − ), we

compute C = (A+)T (A−)T . This method can also deals with undirected cycle.
We simply do not consider d anymore and for symmetry reason, paired matrices
like As1 ×As2 . . . Ask and Ask−1 ×Ask−2 . . . As1 .

We then use theses features to train two kind of binary classifiers, logistic
regression, which is classically defined as

Pr(sign(x(e)) = +|x(e), θ) =
1

1 + e
−
(
θ0+

∑d
i=1 x

(e)
i θi

)

and radial basis support vector machine.

As mentioned in section 2.2 p. 2, one can also rely directly on the adjacency
matrix A without extracting features per se. More precisely, the first relaxation
to this NP-hard problem is to minimize, not a discrete value as the rank, but
||X||F =

√
Tr(X∗X), the Frobenius norm of X. In this case, A? can be perfectly

recovered with high probability, provided that the observed A is a uniform
sampling of A? with enough values [see 3, Theorem 18 for more details]. But
finding this global minima is computationally expensive, which explain a further
relaxation, where we try to minimize the distance between A and X where A is



non zero. Formally

minimize ||P(X)−A||2F
s.t. rankX ≤ k

where the projection operator P is defined as:

(P(X))ij =

{
Aij if Aij 6= 0

0 otherwise

The problem is now than the uniform sampling assumption does not hold for real
network. So the authors propose yet another method, in which the rank k of A?

is assumed to be a parameter known beforehand (and thus an hyperparameter of
the model, one that is arbitrary fixed and not learned from the data), that is
A = WHT , with W,H ∈ Rn×k. They also use loss functions L more adapted to
signed network and a regularization parameter λ to avoid overfitting.

min
W,H∈Rn×k

∑

(i,j):Aij 6=0

L(Aij , (WHT )ij) + λ||W ||2F + λ||H||2F

Finally, they propose to use stochastic gradient descent for the optimization. At
each step t, a edge (i, j) is randomly selected and the respective row of W and
H are updated according to these rules (when using a sigmoidal loss function g,
as in our case)

wi ← wi − ηt
(
∂L(Aij , (WHT )ij)

wT
i

+ λwT
i

)

← (1− ληt)wT
i − ηt

[
Aijg(Aij , (WHT )ij)(1− g(Aij , (WHT )ij))

]
hTj

hj ← hj − ηt
(
∂L(Aij , (WHT )ij)

hTj
+ λhTj

)

← (1− ληt)hTj − ηt
[
Aijg(Aij , (WHT )ij)(1− g(Aij , (WHT )ij))

]
wT
i

Although the complete matrix is −1,+1 valued, because W and H are
initialized at random, they can have any real value. We take advantage of this
to consider such values as score (instead of binary decision), bring them to
[0, 1] using a sigmoid and classifies using a 0.5 threshold (so that positive value
still result in positive prediction). One shortcoming of the low rank completion
approach is that it does not really generalize. If every edge between two existing
nodes can be predicted, as soon as a node is added, A can no longer be considered
as an approximation of the adjacency matrix of the network.

4.2 Experimental results

To asses the performance of our model, we use 10-fold cross validation as in
[10]: we randomly split all the edges into 10 bins, hide one of the bin in the



graph (by setting them to 0), extract the features and train the models on the
remaining 90% edges and test its prediction on the last 10% using the full graph
again. For each method, training time, we report accuracy, the proportion of
correct predictions, and F1 score, the harmonic mean of precision and recall.
Because these last two measures are biased by the skewed distribution of classes,
we also consider: false positive rate, the proportion of negative edges incorrectly
classified as positive and AUC, the area under the receptor operative curve. The
interested reader could refer to [6] but briefly, all our classifiers output for each
edge a probability to belong to the positive class and then, a class with a simple
threshold rule: if Pr(class(x) = +) ≥ t, output +, otherwise output −. All these
decisions can be summarized by a point in a graph with false positive on the
x axis and true positive on the y axis. A classifier always outputting − is in
(0, 0), in (1, 1) if it always output +, in (1, 0) if it always take the correct decision
and in (1− t, 1− t) if the probabilities are random. By varying t, one can build
a curve in this graph and compute the area below it, which is over 0.5 if the
classifier outperforms random predictions. We also compare our three methods
with random prediction and always positive prediction.

We start with Wikipedia (see Table 2), because its smaller size allows faster
experimentation. Some comments can already be made at this point. First, in
the case of directed 3-cycle (or triad), despite significantly larger training times,
SVM does not bring any improvements over logistic regression. It explains why
we have discard it in the following test. These two methods are also dependent
of a higher embedness to provide good accuracy. But even in the case of 2c,
they both perform rather poorly with worse AUC than random prediction and
astronomically high false positive rate. On the other hand, low rank modeling
approach outperforms random and always positive predictions. It may seems
paradoxical that performances degrade when embedness increases, but there is
no causal relation; it just that as the training set size decreases, the adjacency
matrix A becomes sparser and it is more difficult to infer the complete matrix A?.
Likewise, when we consider longer cycle, embedness is no longer relevant because
two nodes can be involved in such cycles without sharing any common neighbors.
Finally, we see that the longer the cycle, the better the result and that directed
version is superior to the undirected one. Except of course for the strange case of
directed 4-cycle, that achieve “hard-to-believe” results. Our first thought was
that information about the sign was somehow present in the features but we
were not able to find where. At least no columns is more that 0.49 correlated
with the sign column. To add to our confusion, the exact same feature extraction
code was use for all cycle length. What is also surprising is that when using five
features corresponding to the largest component of the complete θ vector, we
still get 91.4% accuracy, 30% false positive and 0.953 AUC.

It is worth noting our analysis on which are the 4-cycle (quad) types that are
the most important features in our regression model. In all the 3 datasets, we
find that those features are the most numerous quad types which are most likely
to be closed with a negative edge (see Figure 7).



The results on Slashdot (Table 3) and Epinions (Table 4) follow a similar
pattern, with logistic regression on 3-cycle giving a lot of false positive, low rank
performing decently (although the parameter k = 7 was chosen based solely
on Wikipedia performance) but at the cost of larger training time and 4-cycle
features achieving uncomfortable results.

To see if these results can be generalized, we train our model on one dataset
and test it on the others (Table 5) as in [10]. Epinions can be considered as
“the best teacher” and Slashdot as the worst but overall, the results are rather
satisfying, meaning that these networks share a similar structure of directed
4-cycle.

4.3 Conclusion

Based on theories from Sociology and Computer Science, we tried several model
to predict edge sign in social directed graph, either global (low rank completion)
or local (by counting different type of cycle in which each edge is involved). We
test these model on three dataset and get consistent result with the literature,
except in one case (directed 4-cycle). It remains to find either the mistake we
made or a valid explanation for these good performances.



method accuracy F1 score false positive time [s] AUC

random 0.498 0.610 0.503 — 0.503
only +1 0.788 0.881 1 — 0.5

logistic regression
(directed 3-cycle)

0.745 0.853 0.965 0.837 0.408

SVM
(directed 3-cycle)

0.742 0.850 0.956 568.4 0.362

logistic regression
(directed 4-cycle)

0.995 0.997 0.017 0.864 0.999

logistic regression
(directed 5-cycle)

0.865 0.919 0.537 2.001 0.918

logistic regression
(undirected 5-cycle)

0.828 0.899 0.716 0.500 0.878

logistic regression
(undirected 6-cycle)

0.825 0.898 0.730 0.665 0.876

low rank (k = 7) 0.856 0.910 0.391 44.60 0.766

(a) 103,680 edges with embedness at least 0

method accuracy F1 score false positive time [s] AUC

random 0.500 0.631 0.500 — 0.499
only +1 0.854 0.921 1 — 0.5

logistic regression
(directed 3-cycle)

0.812 0.895 0.945 0.507 0.458

SVM
(directed 3-cycle)

0.805 0.891 0.918 122.8 0.458

low rank (k = 7) 0.835 0.900 0.533 46.92 0.694

(b) 58,383 edges with embedness at least 10

method accuracy F1 score false positive time [s] AUC

random 0.493 0.632 0.504 — 0.503
only +1 0.885 0.939 1 — 0.5

logistic regression
(directed 3-cycle)

0.852 0.919 0.927 0.890 0.503

SVM
(directed 3-cycle)

0.856 0.922 0.894 23.80 0.515

low rank (k = 7) 0.844 0.905 0.501 47.97 0.712

(c) 27,501 edges with embedness at least 25

Table 2: Result on Wikipedia election dataset. The embedness of a edge is the
number of common neighbors of its two endpoint.



method accuracy F1 score false positive time [s] AUC

random 0.500 0.607 0.500 — 0.500
only +1 0.774 0.873 1.000 — 0.500

logistic regression
(directed 3-cycle)

0.807 0.888 0.801 2.350 0.761

logistic regression
(directed 4-cycle)

0.997 0.998 0.013 5.480 0.999

low rank (k = 7) 0.857 0.911 0.441 610 0.894

Table 3: Result on Slashdot dataset.

method accuracy F1 score false positive time [s] AUC

random 0.500 0.631 0.501 — 0.503
only +1 0.853 0.921 1.000 — 0.500

logistic regression
(directed 3-cycle)

0.901 0.945 0.643 4.032 0.919

logistic regression
(directed 4-cycle)

0.981 0.989 0.119 8.259 0.997

low rank (k = 7) 0.935 0.963 0.359 1194 0.949

Table 4: Result on Epinions dataset.

trained on: Epinions Slashdot Wikipedia

tested on Epinions — 0.766 0.007 0.994 0.965 0.233 0.992
tested on Slashdot 0.980 0.084 0.999 — 0.977 0.096 0.998
tested on Wikipedia 0.987 0.017 0.997 0.922 0.004 0.996 —

Table 5: Training a logistic model on each full dataset result in three vectors
θEpinions, θSlashdot and θWikipedia. These vectors were then used to predict the
sign of the edges of the two other networks. Here are reported the accuracy, the
false positive rate and the AUC.
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Abstract

In this project, I studied how free texts can be analyzed to determine the
five major traits of the author’s personality. After carefully extracting a term
document matrix using stemming, I compared the classification performance
of three methods, Support Vector Machine, MultiNomial Naive Bayes and
k-Nearest Neighbors before concluding that the task is difficult. Indeed, the
best accuracy achieved overall is 62.9%.



1 Introduction

Human personality can be described in terms of five traits1, presented in [4] as fol-
low:

§ Extroversion vs. Introversion (sociable, assertive, playful vs. aloof, reserved, shy)

§ Emotional stability vs. Neuroticism (calm, unemotional vs. insecure, anxious)

§ Agreeableness vs. Disagreeable (friendly, cooperative vs. antagonistic, faultfinding)

§ Conscientiousness vs. Unconscientious (self-disciplined, organized vs. inefficient,
careless)

§ Openness to experience (intellectual, insightful vs. shallow, unimaginative)

In this project, we will consider that each of these dimensions is binary (whereas one
may argue that no individual can be perfectly extroverted or introverted) and we will
try to classify people in each dimension based on their writing. More specifically, some
students were asked to produce a so called stream of consciousness essay, meaning that
they wrote their current thoughts freely for twenty minutes. Pennebaker, King, et al. [6]
have collected 2468 such essays which account for about 1.6 million words.2 Furthermore,
they have labeled this dataset by assessing the personality of each author with a standard
questionnaire.

Psychology has showed that the way we express ourselves (for instance by writing) reflects
our personality. A summary of these findings in the case of extroversion is given in[4,
Table 1]. For instance, introverts tend to use a more diverse lexicon, more elaborated
constructions but less positive emotion words. In Bayesian terms, we would say that
the text is an observed variable which is conditioned by a hidden one, the personality.
It is then quite natural to use a statistical natural language processing approach, first
by extracting relevant features (described in Section 2 on the following page) and then
training classifiers of a different kind like MultiNomial Naive Bayes (MNNB), k Nearest
Neighbors (kNN) and Support Vector Machine (SVM) (as explained in Section 3 on
page 5).

In itself, this problem is not of much interest, first because it is not a very convenient for
the people being assessed to spend twenty minutes writing a text and also because this
information alone is of little use. Yet it is interesting as a sub routine for a higher level
task like matching users in a dating site or forming team of workers. It may also affect
the choice of a more refined model for further mining of an individual’s texts. Finally,
it can be thought as a generalization of sentiment analysis, where instead of deciding
between rather straightforward and factual classes (positive or negative), more complex
facets of expression are analyzed.

1Although others are listed on the relevant Wikipedia page.
2It is surprisingly difficult to come with a precise figure because word is loosely defined.
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2 Pre processing

Before doing any classification, I performed several operations to transform the raw data
contained in the file essays.csv into a document-term matrix, which is a more suitable
representation.

§ First, in each line, I separated the text itself from the five labels, which posed no
difficulties but is mentioned here for the sake of completeness. Another “easy but
annoying” issue was that some characters were generating encoding errors (which
was solved not elegantly by removing them, since there was only a few of them).

§ I then wondered what to do about numbers not written in full. I changed single
digit into equivalent word (as shown in Table 1) and replaced all the others by a
single unique token (xnumx).

zero one two three four five six seven eight nine total
raw 18 4,816 1,193 518 287 276 126 95 64 60 7,453

converted 134 5,090 1,814 1,069 737 748 375 297 309 262 10,835

Table 1: Counts of the ten words representing digits. The first line refers to the raw
data, whereas in the second, single digit number have been converted to the
corresponding word. Although it is probably irrelevant, it is amusing to note
most people in this informal setting write numbers with digit and not letters,
especially if the number is not 1 (and to some extent, 2 and 3).

§ To reduce the sparsity of data, I decided to stem all the words, even though it
was not such a severe problem because the texts were all in American English,
which is a rather analytical language. Because I used the python language, I first
looked at various algorithms offered by the Natural Language ToolKit (NLTK)
library[1]. nltk.WordNet is based on the morphy function3 that applies some
suffix-suppression rules before looking up in a database of base forms. In my case,
it was rather slow and for some reasons, it only removed plural endings (like s)
but did nothing about past tense verbs. NLTK also implements Porter[8] and
Snowball[7] algorithms but although it is highly subjective, I found them somewhat
too “aggressive”, for instance transforming was to wa. Therefore I finally chose
hunspell4, which nonetheless came with its own issues such as totally discarding
punctuation, segmenting differently (for instance, mid-day to mid and day) and
generating some irrelevant alternatives (thing is transformed into thing but also
into the+ING) or missing one (woke was not changed to wake). For the last two
problems, Part Of Speech (POS) tagging could have helped but because of the

3http://wordnet.princeton.edu/man/morphy.7WN.html
4http://hunspell.sourceforge.net/
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other issues, the two version of the text were no more aligned. Still in regard with
sparsity, it reduces the number of unique tokens from 29,535 to 13,407.

§ I also collected some general characteristics of the text, namely: the number
of sentences, words and characters; the proportion of punctuation marks and
capitalized letters; and the number of words per sentences.

§ The use of POS can be indication of the personality. For instance, introverts use
more nouns while extroverts favor verbs. Thus I tagged every word with the default
tagger of NLTK (based on a maximum entropy model) (I also considered using a
Conditonal Random Fields (CRF) implementation [for instance 5] but it required
too much training for my goal). It turned out it was the most time consuming
operation (more than 23 minutes on my laptop). After that, I counted in every
text how many times each of the 27 tags appears. A sample is shown in Table 2.

PRO N V P ADV . DET ADJ
total 263,748 260,182 255,939 169,896 154,300 121,431 114,085 90,769

text 1515 189 85 112 135 78 149 194 87
text 1789 108 131 57 86 130 31 69 81
text 1804 38 21 68 35 58 57 24 44

Table 2: Repartition of the eight most represented tag in total and for three random
texts.

§ One thing that I have not had time to consider is Named Entity Recognition.
Yet it would have been interesting to see if this kind of information provide some
insight about personality. For instance, we may imagine that someone citing a lot
of different places is more likely to be classified as opened to experience.

§ The last step was to go through all the texts to find all the distinct tokens along
their counts. A sample of that is shown in Table 3 on the following page. Using
this list, I processed every text individually to compute its feature vector, that
consists of:

– the five class label

– the six general characteristics

– the count of each of the 27 part of speech

– the count of each of the 13,407 token

4



i to the and that my a it is of t
122,593 56,646 40,466 38,077 31,740 29,830 29,153 27,560 25,299 23,177 20,466

Table 3: The first 11 of the 13,407 unique tokens. As expected, most of them are stop
words, expect for I, which is explained by the nature of a stream of consciousness
essays and t which comes from negation’s contraction, as the texts are written
rather informally.

3 Classification

Another way to alleviate the sparsity problem is to resort to general methods of dimension-
ality reduction such as Self-Organizing Map (SOM) or Independent Component Analysis
(ICA). Due to lack of time, I only experimented with Latent Semantic Indexing (LSI),
which consist of computing a Singular Value Decomposition (SVD) of the document
matrix W and keeping only the r largest values.

MultiNomial Naive Bayes A simple model which assume that all features are mutually
independent and only depend of the class, i.e. P (c | w) ∝ P (c) ∏

i P (wi | c). Because I
use a bag-of-word model, P (wi | c) are supposed to follow a multinomial distribution
whose parameters are simply the count in the data, according to the maximum likelihood
estimation. I use the off-the-shelf implementation of MATLAB5, whose interface is very
simple.

Support Vector Machine A maximum margin separator that operates in a high
dimensional space derived from the original one by the use of a kernel. There, the
two classes are linearly separated by a hyperplane described by the so called “support
vector” instances, selected by the optimization procedure. It works because kernel
is a function K(x, y) which measure the similarity between two instances x and y:
the smaller it is, the more related they are. The easiest choice was to use a kernel
based on euclidean distance (namely, a radial basis function K(x, y) = e−

||x−y||2
σ2 ) but

it would have been more interesting to implement a common subsequence kernel[3],
Kn(x, y) = ∑

sx∈Sn(x)
∑

sy∈Sn(y) 1sx=sy , that, as its name suggest, keep track of how many
subsequences of length n are shared by x and y. On a practical note, I used a C++
implementation written by Chang and Lin [2] with a MATLAB interface. One flaw of
my approach was that although SVM requires careful tuning of its two parameters σ2

and C (for regularization), it is very time consuming so I did it once for one dimension
and then use the same parameters for all subsequent runs.

5http://www.mathworks.se/help/stats/naivebayes.fit.html

5



k Nearest Neighbors Contrary to the two other methods, kNN has no training phase
but when given a new sample to classify, it finds the k closest points in the training set
and assign their majority class. The hyperparameters of the model are k (which I set
to 5) and again, the distance used. Using the MATLAB implementation6, I had the
choice between ten of them,7 and after some preliminary comparison, I chose correlation
distance, which is one minus the linear correlation coefficient between two documents
seen as a sequence of numerical value. Because I found out it did not hurt accuracy yet
it was beneficial to the speed, I used only tokens that appeared in more than 3% and
less than 90% of all documents, which gave 1,052 features.

Since the dataset was almost perfectly balanced for every five traits, I decided that
accuracy was a sufficient measure of assessing performances of the various methods
and distinguishing them from random guessing. The other noticeable methodology
point is that all measures reported have been computed from 5-fold cross valida-
tion.8

Because SVM performs better when all the features are in the same range, I first
planned to use tf-idf weighting with a llc scheme. Namely, if N = 2468 is the number
of documents, ai,j the number of times that word j occurs in document j and dj =∑N

i=1 1ai,j>0 the number of documents that contain the word j appear, I replaced ai,j by
bi,j = (1 + log(ai,j)) log N

dj
and then I normalized the column of B to unit vector (or set

it to zero if the word appears in all document9). But after looking at the initial results,
I simply stuck with standardization, that is subtracting the mean and dividing by the
standard deviation of each column.

Extroversion Neuroticism Agreeableness Conscientiousness Openness
Full matrix

MNNB 0.564 0.587 0.563 0.552 0.629
SVM 0.557 0.532 0.524 0.528 0.597
kNN 0.533 0.521 0.481 0.514 0.557

250 most relevant dimensions
MNNB — — — — —
SVM 0.550 0.551 0.542 0.517 0.573
kNN 0.518 0.522 0.509 0.509 0.526

Table 4: Accuracy of the three methods for the five traits, using or not dimensionality
reduction (the multinomial assumption does not hold after the SVD reconstruc-
tion).

6http://www.mathworks.se/help/stats/classificationknn.fit.html
7I discard the Mahalanobis distance because computing the covariance matrix took too much time.
8For even more details, the code is available on github: https://github.com/daureg/wcpr13
9Although it did not happen in this dataset.
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The first comment that the results presented in Table 4 on the previous page calls is
that this kind of classification is “difficult” in the sense that in most cases, the accuracy
is only slightly above what random guessing would have generated. The second is that
dimensionality reduction does not produce a very noticeable impact on the results. Then,
Openness is significantly easier to predict than the other traits for all the methods.
Finally, despite its conceptual simplicity, MNNB consistently outperforms SVM while
kNN is the worst of the three, probably because the metric used is not well adapted to
text.

4 Conclusion

Predicting author’s personality from one of their stream of consciousness essays is a
difficult task that is naturally suited to Statistical Natural Language Processing (SNLP).
After some pre-processing steps (text extraction and cleaning, stemming, POS tagging
and term-document matrix building), I tried three machine learning methods to perform
classification. Naïve Bayes was the most successful although the others may have benefit
from the use of a distance metric tailored to text analysis.
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getting a binary image of the object

I first looked at the histogram (Figure 1b) of the original cup (Figure 1a) to select an appropriate threshold
value to separate the object from the background. e most common value is 0, corresponding to the black
background. But because of the quantization, the border of the cup is a bit blurry and there is no clear cut until
the first non zero value, so I chosen 0.1, but it is prey arbitrary. To have a smoother contour, I then compare
opening and closing by square and cross shaped structural elements of various size, as shown in Figure 2 on
the following page before opting for 2e, an opening by a 5x5 square.

(a) e gray scale cup.
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(b) Its histogram, omiing the 0 pixel.

Figure 1: Original object.

fourier descriptors of the inner border

Given the binary image of the object, I used inner boundary algorithm—described in listing 1—to obtained
the result shown in Figure 3 on page 4. I then used this list of coordinates B =

(
(Bxi)i=1...N , (Byi)i=1...N

)
to

compute its Fourier transform F = abs(fft(Bx + iBy)), discarding its first component and dividing it by its
second to get a position and scale independent descriptor.
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(a) Opening by a 3x3 cross (b) Opening by a 5x5 cross (c) Opening by a 7x7 cross

(d) Opening by a 3x3 square (e) Opening by a 5x5 square (f) Opening by a 7x7 square

(g) Closing by a 3x3 cross (h) Closing by a 5x5 cross (i) Closing by a 7x7 cross

(j) Closing by a 3x3 square (k) Closing by a 5x5 square (l) Closing by a 7x7 square

Figure 2: Various morphological operator tried to get a cleaner contour. Red crosses denote pixel removed from the
original thresholded object while green ones stand for added pixel.
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function B = inner_boundary(picture, label)
% INNER_BOUNDARY return the inner boundary of the object
% described by 'label' in 'picture' using 8 connectivity.

% we first look for the first row from top where the object appear
j = find(any(picture == label, 2), 1);
% and in this row, the first column
i = find(any(picture(j, :) == label, 1), 1);
% it is the first pixel of the boundary
B = [i j];
t = 1;
dir = 7;
closed = false;
% then until we close the border
while not(closed)

% we choose the next direction according to the formula
dir = mod(dir + 6 + (1-mod(dir, 2)), 8);
% and start looking for neighboring pixel in this direction
while true

[ni, nj] = get_dir_pixel(i, j, dir);
% if we are in the background
if picture(nj, ni) ~= label

% we continue in anti clockwise direction
dir = mod(dir + 1, 8);

else
% otherwise...
break;

end
end
% ...we add this new pixel to the border
t = t +1;
i = ni; j = nj;
B(t, :) = [i, j];
% and finally check if we are back to our starting point
closed = t > 3 && all(all(B(1:2, :) == B(t-1:t, :)));

end
% remove the last two overlapping points in the border
B(end-1:end,:) = [];

end

Listing 1: Inner boundary

complete scene

I followed similar steps for the whole scene (as shown in Figure 4 on page 5), but I used the value 0.085 as a
segmentation threshold.

object detection

Now that I have the border of these eight objects, I can also compute their Fourier descriptors. e smallest
boundary has 211 coordinates so I considered between 2 and 211 of them (since the first one is always one)
and look at their distance with the one of the original cup. Except for 210 and 211, it is always possible to find
a threshold value that separate the three cups from the other objects. Considering the margin between the
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Figure 3: e border of the cup drawn in red.

farthest cup and the closest other kind of object, it is maximised for 31 components although it is not very
significant (see Figure 5 on page 6).

analysis of results

I we consider only relevant number of coordinates (i.e., those for which the margin is more than 0.21), we find
that results are rather consistent, as demonstrated in Table 1: the standard deviation is small and the various
cups are clearly closer to the original one. e cup with original orientation and the one rotated by an angle of
45◦ have almost the same distance, which agree with the rotational invariance of Fourier descriptor. Yet the
45◦ rotated is more than two times farther. I think it may be because discrete low-resolution do not provide
very sharp result. In non cup objects, the closest one is the frog and the farthest one the cylinder, although I
would have expect quite the opposite.

Fourier descriptors are a good first step to discard objects whose boundary obviously make them non cup. Yet
to be more precise, one could sample texture of the candidate object and see if it matches with the original
cup.

90◦ cup car cup sandwich saucer frog cylinder 45◦ cup

mean 0.056 0.677 0.057 0.673 0.658 0.424 2.185 0.138
std 0.010 0.002 0.004 0.006 0.005 0.012 0.073 0.011

Table 1: Given the distance of each object's boundary to the original one for a large range of coordinates number, we
can compute the mean and the standard deviation.
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(a) Original gray scene with noise (b) e noise is still there aer thresholding

(c) Aer opening by a 5x5 square, there is no more noise and
object's contour are a lile bit beer

(d) Connected component are labeled by MATLAB bwlabel
function which allow me to trace their border in black.

Figure 4: Extracting objects from the scene.
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Visualizing US Census data
Is education worth it?

Géraud L F*—336978

March 14, 2013

1 motivation and dataset

I chose to analyze the UCI Adult dataset, which contains basic demographic information about 32 561
US citizen aged over 16. I describe it with more precision in Table 1, as well as the preprocessing that
I applied to it. I then decided to focus on the impact of education regarding several other variables,
and especially the income. Indeed, in these times of economic struggles, education is oen seen as
protection against unemployment and can even be considered an investment, in terms of time and
money. On the other hand, some economists have raised concerns about a Higher education bubble,
describing rising tuition fee and decreasing rate of return. Unfortunately, it will be difficult to answer
this question, given that the data are from 1994. We can still generate some visualizations that may
give—in principle—an insight about this theory.

2 what is the level of education?

One of the first question I asked to myself is how much the education situation differs from 2012. As
a corollary, is the sample of 1994 representative of this year? I first thought of doing a bar chart, but
to compel the reader to look only at the numbers I consider relevant, I chose to present it differently
in Figure 1. Namely, for each level of education, I put the proportion of individuals in the sample that
have reached it, and the difference with the two reference years¹. It agrees with Tue's advice because
it avoids a lot of redundant ink that would have made up the bar, yet one can still figure out all the
raw numbers. I used three colors, black for sample's values, blue and red for 1994 and 2012. It is not
really complying with the opponent color theory that would have suggested to pair red with green or
blue with yellow but I think it is nonetheless a widely accepted choice, and it may be beer suited to
black and white printing. In the dataset, there are sixteen different education levels, from preschool
to doctorate. To improve readability, I regrouped all of those prior to high school graduation and all
of those whose got a higher education diploma. is way, all the values are in the same range and
the overall picture is still relevant. You can compare with Figure 5 that tries to encompass all the
values.²

* geraud.lefalher@aalto.fi
1 using raw data from the US census website.
2 it is situated over the fih page but I only put it for the sake of completeness.
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Figure 1: Difference of education's level in the sample compared with 1994 and 2012

3 are men coming from mars and women from venus?

Girls allegedly perform beer in school before college, when they somewhat fall behind boys. To find
if we can see this fact in the dataset, I put in Figure 2 the proportion of people³ that stop their education
at any level and I plot how it differs if we consider only the female individuals⁴. On the substance, we
can conclude that is there not so much difference until the high school graduation. But then, women
are more likely to leave college without geing a diploma. On the form, the plot is rather simple. I
tried to make a grid with relevant (but rounded) values and keep it rather discrete⁵. Yet many things
can be improved: some labels—coming directly from dataset—are cryptic, the whole graph is barely
understandable without further explanation and the size of percentage in the middle can have been
proportional to their value to make them more visual. e main problem of these suggestions is that
they would have increase the already critical width of the figure. One may also argue that it only shows
32 values, a low number suggesting that a table would have been enough. Yet I think the plot allows to
see these numbers more quickly.

4 does studying make one desirable?

I further explored this fundamental duality between men and women using another variable of the
dataset: marital status. Again in Figure 3, I regrouped similar situations into only three for legibility

3 i.e., the average of both sexes.
4 who make up one third of the dataset.
5 maybe too much for printing.
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Figure 2: Gender's bias in education.

purpose. It is a bubble chart that uses red/blue opposition to depict a third dimension: is the income
greater than $50 000. We can draw several conclusions from it. In general, less than half of the people
is married, but if they are, they are more likely to have fully completed their study. e trouble is
that we cannot say what is the direction of the correlation, if there is any. It also seems that married
people have higher income, but that may be simply because it is household's income. From a visual-
ization perspective, the similarity of bubbles is an incarnation of the small multiples' principle. e
area of each circle is directly proportional to the number of people it represents, thus the lie factor is
one. e horizontal percentages tell, for a given marital status, how it is distributed among the four
education levels. It conversely holds for vertical percentages although I am not convinced it is very
clear.
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Figure 3: Marital status and education. e blue part of each circle is the fraction with high income.

3



5 will all these library’s hours turns into gold?

Finally, let's take a look at the original question, is education a sound investment? I plot binary class
(high income or not) against age and education level in Figure 4. In my opinion, this is the most
interesting one because of its density. Indeed, it depicts (90 − 17 + 1) × 2 × 4 = 592 values, which
would be quite unbearable in a table. One nice thing about it is that even if we cannot read specific value,
because of the Gestalt law of similarity, we associate all the bars of the same color and that allow us
to perceive a kind of envelope. It teaches us unsurprisingly that if anyone can earn more than $50 000,
the higher the education, the faster and the more likely it is. Again, it would have been interesting to
distinguish between say, Bachelor and Master, but there is not enough sample in the dataset for that to
be meaningful.
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Figure 4: Income given age and education background.
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appendix

Dataset in details

Variable Description Preprocessing

age numeric variable ranging from 17 to 90 —
workclass categorical variable of 8 employment situations —
fnlwgt continuous pre computed weight removed
education categorical variable of 16 education levels —
education-num same as education but numerical removed
marital categorical variable of 7 marital status reduced to 3 status
occupation categorical variable of 14 job kind —
relationship categorical variable of 6 familial relation types —
race categorical variable of 5 races —
sex categorical variable of 2 genders —
capital-gain continuous variable discretized into 3 bins
capital-loss continuous variable discretized into 9 bins
hours-per-week continuous variable ranging from 0 to 99 discretized into 20 bins
native-country categorical variable of 41 countries removed
class binary variable indicating an income over $50 000 or not —

Table 1: e 15 dimensions of the original dataset, and the preprocessing applied. Some of it was done because
I was hoping to get a good 2D reduction using t-statistical nearest neighbor but it did not happen.

Feedback

Aer choosing the dataset on the noppa page, I spent one or two hours looking at it with Weka to find
an interesting phenomenon and how to visualize it. I then made the figures using the TikZ package
of LATEX, which gives customizable and good-looking results in a reproducible but time-consuming
way. Finally, I wrote this report, which took me more time than I expected because as you may have
noticed, English is not my native language. Overall, I think a fair estimation would be something
around nine hours⁶. Apart from some technical frustration, I think the main difficulty comes from the
fact that both visualization and datasets are very rich and open-ended, and this freedom may be a lile
overwhelming.

6 without counting the 150 minutes that the poor Matlab spent in vain trying to reduce dimensionality.
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T-79.5207 Programming Assignment
Spring 2013 — The k-Path Motif Problem

In this programming assignment you will design, implement, and
analyse an algorithm of your choice for the following problem.

k-PATH MOTIF
Input:
(1) a graph G with n vertices and m edges;
(2) a colouring of the vertices of G with c colours; and
(3) a multiset (“the motif”) F of size k consisting of colours.
Task:
Find a path in G on k distinct vertices whose colours agree with F ,
or conclude that no such path exists.

Example. Fig. 1 displays a vertex-coloured G with n = 10, m = 15,
and c = 4. Suppose now the “motif” F is as depicted in Fig. 2, with
k = 5. In this case G has a path on k distinct vertices whose colours
agree with F , as Fig. 3 illustrates. On the other hand, the graph in
Fig. 1 has no path that agrees with the motif in Fig. 4.

Complexity. The k-PATH MOTIF problem is (a) known to be NP-
hard already when c = 1 by reduction from HAMILTONIAN PATH,
and (b) known to be fixed-parameter tractable with respect to the
parameter k via, for example, colour coding. Thus, an algorithm
with worst-case running time polynomial in m is unlikely to exist,
but algorithms with worst-case running time O(f(k)m log n) do exist
for f(k) = exp(O(k)). (Here we tacitly assume m ≥ n ≥ c .)

Assignment. But how hard is k-PATH MOTIF in practice? Your
task is to explore this question, by

(i) designing, implementing, and analysing an algorithm of
your choice;

(ii) constructing small, difficult benchmark inputs to demon-
strate the performance of your program; and

(iii) evaluating a solution to (i) and (ii) made by your peer(s).

More detailed instructions are given on the next two pages.

Evaluation criteria. First and foremost, your algorithm and its im-
plementation should be correct. For all correctly formatted small in-
puts (say, n ≤ 12), your program must terminate in reasonable time,
and must not give an incorrect output when tested by a friendly
but firm peer. That is to say, randomized algorithm designs are ac-
cepted and encouraged – just make sure that the probability of er-
ror is small! Second, your algorithm should be clearly documented
and its implementation easy to use, with peer reporting in mind.
Third, your program should be fast and tuned towards worst-case
performance, with an emphasis towards good performance when k
is small.

Grading. Max 12 points. Solution to (i) and (ii) max 8 points, peer
report(s) written for (iii) max 4 points. Points awarded based on sub-
jective assessment by course staff, utilising peer reports as input.

Fig. 1: Coloured graph.

Fig. 2: A motif.

Fig. 3: A path that
agrees with motif.

Fig. 4: A motif with no
solution.



Instructions (1/2)
Programming language. You may use any programming language
you like and enjoy to use, but please do take into account your peers
and the performance aspects. Perhaps your programming language
of choice should be easily available on most computing platforms,
including any libraries that you may decide to use – your peer should
be able to compile and execute your program from the source code
and instructions supplied by you.

Documentation. Please remember that your submission to (i) and
(ii) will be studied by your peer. Make sure to document your sub-
mission so that your peer understands what has been done.

Your code versus code written by others. You must indicate if you
have used code or libraries written by other people in your program.

Input and output conventions. Your program must read the input
from the standard input stream (“stdin”) and write the solution to
the standard output stream (“stdout”). Additional non-mandatory
output, such as program status reports during execution, may be
written to the standard error stream (“stderr”).

Input format. Input must be accepted in the following textual for-
mat. Lines starting with “#” may occur anywhere in the input and
should be ignored. The input consists of zero or more consecutive
instances of the following form. An instance starts with a single line
“p n m c k” that gives the parameters n, m, c, and k, which must
satisfy 1 ≤ n ≤ 103, 1 ≤ m ≤

(
n
2

)
, 1 ≤ c ≤ n, and 2 ≤ k ≤ 30. The

parameter line is followed by m lines that specify the edges of the
graph G. Each line that specifies an edge is of the form “e i j”, in-
dicating that vertex i ∈ {1, 2, . . . , n} and vertex j ∈ {1, 2, . . . , n} are
joined by an edge. Duplicate edges and/or self-loops with i = j must
not occur. This is followed by n lines that specify the colours of the
vertices of G. Each line that specifies a colour is of the form “c i
d”, indicating that vertex i ∈ {1, 2, . . . , n} has colour d ∈ {1, 2, . . . , c}.
Every vertex i ∈ {1, 2, . . . , n}must be assigned a colour exactly once.
This is followed by one line of the form “f d1 d2 . . . dk” that specifies
the motif F , with d1, d2, . . . , dk ∈ {1, 2, . . . , c}.
Output format. The solution of each instance in the input must be
given in the following textual format. If the graph G has a path i1—
i2—. . .—ik that agrees with the motif F , with i1 < ik, write the line
“yes i1 i2 . . . ik” to the output. In case there is more than one such
path, any one path will do. If the graph G has no path that agrees
with the motif F , write the line “no” to the output.

Example. Fig. 5 displays an input that is represented in our input
format in Fig. 6. We observe that there is a unique solution, namely
the path 5—4—1—3—2, which we must output in our output format
as displayed in Fig. 7.

Further examples and test inputs. Further examples and benchmark
families for testing and measuring the performance of your program
are available in Noppa.

1

5 6432

Fig. 5: Coloured graph
and a motif.

# Example input
# (cf. Fig. 5)
p 6 6 4 5
e 1 3
e 1 4
e 2 3
e 3 4
e 4 5
e 5 6
c 1 1
c 2 2
c 3 3
c 4 2
c 5 4
c 6 3
f 3 1 4 2 2

Fig. 6: A valid input.

yes 2 3 1 4 5

Fig. 7: The solution.



Instructions (2/2)

Timeline. All deadlines are “no later than” (Finnish time).
15 Jan Programming assignment and supporting materials handed out in Noppa

(Individual work on the programming assignment)
5 April Submission of your programming assignment to course staff
8 April Assignment of peers

(Reviewing period)
22 April Submission of peer report(s) to course staff
29 April Grading announced for programming assignment

Submission instructions for programming assignment. Please submit the assignment to the
course staff no later than 5 April (Finnish time). The submission is by email to the course
email address “t795207@ics.aalto.fi”. Please format the title of your email as “T-79.5207
Programming Assignment: SID Surname, Givennames”. That is to say, if my student ID is
123456 and my name is James Ulysses Bond, I would use the title “T-79.5207 Programming
Assignment: 123456 Bond, James Ulysses”. The email should have a single attached zip
archive that contains all the files relevant to the submission.

The submission archive. The archive should be named “SID_Surname.zip” and have no more
than 2MB compressed size. That is to say, “123456_Bond.zip” and no more than 2097152 bytes
in size. The following files and subdirectory structure must be present in the archive:

./ empty root directory
SID_Surname/ submission subdirectory
SID_Surname/README.pdf PDF file containing a short description of

your submission (algorithm, implementation,
and benchmarks), including your contact in-
formation

SID_Surname/USING.pdf PDF file containing a short description on
how to compile and use your program

SID_Surname/PERFORMANCE.pdf PDF file containing a performance report on
your program

SID_Surname/source/ subdirectory with all source code (may have
subdirectories)

SID_Surname/benchmarks/ subdirectory with your benchmarks (may
have subdirectories)

Submission instructions for peer reports. Will be given upon peer assignment.

Questions? First, check Noppa for further information and instructions (code, examples). Second,
ask after the lectures and/or tutorials. Third, use the course email address.

Background on motif problems
[1] Nir Atias and Roded Sharan. Comparative analysis of protein networks: hard problems, practical

solutions. Communications of the ACM 55(5) (2012) 87–97. http://dx.doi.org/10.1145/2160718.
2160738

[2] Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. Probably optimal graph motifs. Proc. 30th
International Symposium on Theoretical Aspects of Computer Science (STACS 2013, Kiel, Germany,
27 February–2 March, 2013), to appear. http://arxiv.org/abs/1209.1082 (preprint)

[3] Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif search in graphs: applica-
tion to metabolic networks. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4) (2006) 360–368.
http://dx.doi.org/10.1109/TCBB.2006.55



A branching algorithm to solve the
k-path-motif problem

Géraud Le Falher*—336 978

April 5, 2013

is branching algorithm builds its search tree using the branch function.
is function take as argument:

• the part of the motif that is still unmatched.

• the path so far.

• the nodes that have not yet been considered.

If it can abort, it does it (that is the case if the length of the path is k, if the
length of the motif if larger than the number of remaining nodes or if there is
no more nodes). en, it chooses some node to continue the path. If the path is
empty, it is just a random node. Otherwise, it considers all possible nodes (that
is, the neighbors of the two extreme nodes of the path) which are consistent with
the motif—let's call them path's neighbors in the following. But it only keeps a
random α fraction of them. For each of these successor nodes v, it generates
two branches: one where v is added to the path and another where it is not
added. More formally: {motif, path, nodes ∖ {v}} and {motif∖ color(v), path∪
v, nodes∖v}. For each of these branches, the function returns its corresponding
recursive invocation along with the new path, the path's length¹ and the nodes
still in the graph.

To solve a particular instance, find_k_motif first simplifies the graph. Aer
that, it contains only the nodes whose color is in the motif and for each of them,
the list of its neighbors. Next, the first call of branch (with the complete motif,
an empty path, and all the graph's nodes) is put in a priority queue indexed by
the length of the path. en, it recursively push the subtree of the current head
of the queue into the queue in a depth first manner, keeping track of the longest

*geraud.lefalher@aalto.fi
¹actually, for implementation reason, it is the opposite of the length
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path found so far. It continues until either the queue is empty or a path of length
k is found.

To use parallelism, the main functionmake a first call to find_k_motifwhich
returns a list of subtree whose root is at level 2. A new process is spawned to
search this subtree as described in the previous paragraph using find_sub_path

(which starts at a root given in argument). One obvious flaw of this clumsy
approach is that the number of subprocess is determined by the input and cannot
be specified beforehand. It is also not well balanced, since subtrees that do not
contain solution are much deeper. If there is a solution, it is less bad, because as
soon as one process found it, they are all terminated.

Because the function branch stops when it is called with zero nodes and be-
cause for each recursive call, the number of available nodes is decrease by one,
the algorithm halts. Furthermore, by construction, the paths are consistent with
the motif. So when the algorithm returns a path, it is correct. Two questions
remain. What is the size of the search tree? When α, the fraction of neighbors
considered to pursue the path, is strictly smaller that 1, what is the probability
of false negatives.

Let's T (n) denote the number of tree nodes at level n, δmax the maximum
node degree and Ni(n − 1) the number of path's neighbors for the iᵗʰ nodes of
level n − 1. en

T (n) =

T (n−1)∑

i=1

2αNi(n − 1) ≤ 2T (n − 1)α2(δmax − 1) ≤ (4α(δmax − 1))n

which is prey bad. For instance, on a complete graph, is it O (n!). Moreover,
there is also the cost of maintaining the priority queue and each of the nodes—
containing a partial list of graph's nodes—takes O (n) space. But it is a rough es-
timate because we can hope that (1) not all nodes have δmax neighbors, especially
with acceptable color and (2) the depth first search will ends before exploring the
whole tree. It even turns out that the unicolor complete graph is a favorable case
because by seing α = 1/n, a path is found in linear time. Another disappoint-
ing feature of this complexity is that it does not depend of k. Indeed, because
the algorithm do not add a node in the path in every branch, it may need much
more that k steps to terminate (contrary to the branching algorithm forminimum
vertex cover page 14 lecture 9).

For the graph G = (V,E), let's partition V as V = P ∪ P with P = {v ∈
V : v belong to a k-path}. Denote by Xv the random variable that indicate if the
algorithm, starting from v, has found a path. Because the algorithm never drops
node from the path, if v ̸∈ P , Pr(Xv = 1) = 0. Here we consider the worst case
where there is an unique path, hence |P| = k. Assuming that v is in position q in
the path, there are k0 = q−1 nodes before it and k1 = k−q aer. If the path can

2



be continued in only one direction, the probability of selecting a correct set of
neighbors is ⌈αδ(v)⌉

δ(v)
which I relax to α to make further computations easier. If the

two directions are possible, the probability to pick at least one correct node in one
of them is 1− (1−α)2 = α(2−α). Starting from v, we first made two-direction
selection until we hit one end of the path and then one-direction selection. So
Pr(Xv = 1|v is in position q) = Pq = (α(2 − α))min(k0,k1) αk−min(k0,k1). Fi-
nally, because the algorithm can independently find the path by starting from
any position, Pr(X = 1) =

∑k
q=1 Pq = 2

∑⌈k/2⌉
q=1 (α(2 − α))q−1 αk−q by sym-

metry. en

Pr(X = 1) = 2αk−1

⌈k/2⌉∑

q=1

(2 − α)q−1 = 2αk−1 (2 − α)⌈k/2⌉ − 1

1 − α

Let f be the function x → (2−x)c−1
1−x

. By seing x = 1 − ϵ and doing a first order
Taylor's development, one can find that limx→1 f(x) = c. So by continuity, when
α = 1, Pr(X = 1) = k, which is rather disturbing for a probability. I think it
means that the algorithm will find the path k times and that a normalization
constant is missing. Nonetheless, it shows that by increasing α, the probability
of false negatives is decreased but at the expense of αn in the complexity. One
can also run the algorithm several times to reduce this probability. If there is
more than one path, the same analysis can be done and the probability of finding
a path is higher because there is more starting points. Yet, it is more complicated
because is some path are crossing, there are more than two direction to pursue
the path.
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Because the algorithm is randomized, I've ran it 50 times on each input to get a
histogram of running time. First, I try to see if themulti processes approach bring
some improvements. It is the case when there is only one path (see Figures 1 and
2) and when there is none (see Figures 3 and 4). en I try to construct a small
but difficult instance. In my case, it is a graph that has no solution but a high
average degree. erefore, I make a nine complete graph with two color. e
second appears only three time in the graph but four time in themotif. It is indeed
difficult because in both case of single and multi process, there is a non negligible
part of the runs that take significantly more time than the others (see Figure 5).
Finally, I also look at the performance when the number of edges grows in Table
1. But unfortunately, it is hard to find a relation between the performance and
the number of edges, nodes or even k. For example, n = 28,m = 55 and k = 9
is beer than n = 28,m = 55 and k = 9. It also interesting to see that because
k/n is never too small, the minimum time is always very small.

instance edges average min max correct
16-6-1x6 15 0.159 0.15 0.17 1.0
16-9-1x9 20 5.105 0.15 42.24 0.7
20-6-1x6 25 0.166 0.15 0.20 0.88
24-11-1x11 31 79.832 0.16 828 0.88
28-8-1x8 36 42.327 0.15 1024 .96
28-8-2x4 41 5.028 0.15 130 0.96
32-8-1x8 48 17.031 0.15 520 0.9
28-9-1x9 55 2.924 0.15 24.7 0.9

Table 1: Performance of 50 runs of the algorithm over instances with a growing
number of edges and nodes. All the time are in second, correct is the percentage
of runs that return the right answer

1
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Figure 1: Multi processes with a unique path.
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3



200 300 400 500
0

5

10

15

time [ms]

count

no-16-6-1x6-multi

x̄ = 268.04
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T-61.6050: Project report
Sparse classification using (Deep) Belief Network

Géraud Le Falher geraud.lefalher@aalto.fi

Abstract

In this project, I use Deep Belief Network to per-
form a classification task, namely predict the period
of the week at which Flickr photos were taken given
their user supplied tags. I find out that by using
a single layer, it performs almost as well as other
methods but provides a more interpretable model.

1. Introduction

In another course I extracted metadata from photos shared
on the Flickr1 website. Theses photos were all taken in
San Francisco since 2008 and contain, among others, the
following information: the time and place were the photo
was shot and a list of free form tags chosen by the user (that
are normalized as lower case words). The goal in that course
was to exploit this dataset to describe the geography of the
city, either as whole or, given a specific region, find which
tags provide a good description of it. A thorough study of
this problem can be found in [5].

In this project, I instead wanted to make use of the temporal
information by predicting the time at which each photos was
taken given its tags. In the general case, this is a regression
problem but to make it easier (and because it is not really
interesting to know whether it was taken at 8:23 or 8:31), I
divided the day into four intervals and the week into two,
which result in the eight classes shown in Table 1.

days 0 to 6 6 to 12 12 to 18 18 to 24

Mon—Fri 0 1 2 3
Sat, Sun 4 5 6 7

Table 1: The eight time classes. It reads as follow: photos of
class 6 were taken during the week-end between 12am and
6pm.

Another way of reducing the size of the problem was to not
consider all tags. Indeed, the dataset contains more that
140,000 unique tags, but some of them are used rarely, only
by a few users or over short period of time. Therefore, I
kept only those that were used at least 150 times, by at
least 25 users and over at least 500 days. Then, for each of
the 1,874 tags left, I computed their entropy with respect
to their frequency in each class and I removed those above
a threshold, as I conjectured they were too generic to be
informative (for instance, sanfrancisco, clouds, phone and love
were discarded by this process). Finally, I kept only photos

1http://www.flickr.com

that had at least two tags and I put them in a n by d binary
matrix where n = 68859, d = 825 and each row represents a
photo, described by a binary vector indicating for each tag
whether it appears in the photo or not.

2. Methods

Because we are left with a standard classification prob-
lem, I tried several baseline methods to compare with dbn.
Namely:

Näıve Bayes a model that assume all features are indepen-
dent and come from a binomial distribution. Parameters
are simply maximum likelihood estimates and it is often
use for bag of words model.

Logistic Regression a discriminative model that esti-
mates the probability to belong to one class and is
trained by maximising likelihood.

k-Nearest Neighbors a natural procedure that chooses
the class of the majority of the k closest training exam-
ples. I used Hamming distance as an approximation of
the Euclidean norm because most coordinates are zero.

SVM a linear maximum margin separator. I used libsvm
implementation of c-svm [2], which train pairwise clas-
sifiers with Gaussian kernel2.

The dbn is made of several layers of Restricted Boltzmann
Machine trained with one step of contrastive divergence and
classification was performed by logistic regression on top of
it. I used code written by the authors of the Python Theano
library [1].

3. Results

3.1. Performance

The performance of the baseline methods are shown in Ta-
ble 2 on the next page. The main comment is that it seems
to be a difficult problem, as the best accuracy, achieved by
svm, is only 69.5%.

However the result of the dbn were no better. We can see on
Figure 1 on the following page that with 2 layers, regardless
of their size, the error rate is around 35% (except for two
anomalous points). I then decided to use only one layer and
the error dropped by a few percent although it had a rather
erratic behavior. The best result, obtained with 1,175 hidden
units and an adapted learning rate, was 32.35%. Yet I used
a smaller model (with only 158 hidden units) to interpret
this outcome.

2K(x, y) = exp
(
− ||x−y||2

2σ2

)



Sparse classification using (Deep) Belief Network

method error time (seconds) parameters

Näıve Bayes 44.56% 0.9 —
Logistic Regression 42.65% 6.4 λ = 10
k-nn 39.81% 1440 k = 5, Hamming distance
svm 31.53% 960 C = 4.02, σ2 = 0.97

Table 2: Error rate and running time of the four baseline methods (along with the choice of parameters with which they
were obtained).

3.2. Interpretation

My hope by using a small first layer was that the dbn
would be able to perform some kind of clustering over the
tags, because many of them share a similar semantic with
others. To verify this hypothesis, I selected, for each hidden
units, the 10 tags that have the largest weights connection.
Relevant examples are shown in Table 3. The unit 6 refers
to same sex marriage3, the 35 to some kind of festivity and
the 95 to “Bay to Breakers”, a race organized in May in
which many participants wear costume.

Since, rbm is a generative model, I also tried to produce
some new photos but the tags I got did not let me draw any
relevant conclusion.

4. Discussion

Deep Belief Network was the slowest approach (even with one
layer it took more than 40 minutes to train and predict) and
only the second best performer, a bit behind svm. At first, I
thought that maybe I made an erroneous modification to the
code so I tried it with the same parameters and three layers
of 500 units over the MNIST dataset, because it has similar
dimensions. In that case, the log likelihood of the data was
indeed decreasing consistently in each layer and it achieved
an accuracy of 1.5%, the expected number in that situation.
Therefore I think that the main issue lies in the sparsity of
the data, because most photos have only two or three tags.
I did not have time to conduct a comprehensive literature
review but the papers I found suggest that instead of Gibbs
sampling, it may be better to use Metropolis-Hasting [3] or
Importance sampling [4], although they are mainly referring
to faster running time.

3Proposition 8 was a law prohibiting such marriage and was
later declared unconstitutional.
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Figure 1: Error rate of dbn as a function of its two (top) or
single (bottom) layers size.

unit tags

6 prop8, gaymarriage, equality, marriage, proposition8, court, valentinesday

35 parade, cosplay, pride, sfpride, parks, event, celebration, carnaval

95 baytobreakers, race, parade, costumes, team, racing, santa, college

Table 3: Top-weight tags for some hidden units.
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Le Falher Géraud Sanja Šćepanović Luiza Sayfullina
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The purpose of this report is to review the paper “Fitting a graph to vector
data”. It describes how vector data can effectively be fitted to a graph form in
order to solve classification, regression and clustering problems. We’ll provide
open questions that were left to the reader regarding construction of the graph
and make analysis of experimental results.

1 introduction
A lot of research has been conducted in using graph representation of a vector data in
order to solve various problems. Spectral clustering is one of the examples, where the
eigenvectors of the Laplacian matrix are used. Laplacian matrix is built using the Gaus-
sian weights between the vectors. In this paper, a new and more sophisticated method for
constructing graph from the set of vectors is presented. The distance metrics used in this
approach shows promising results for classification problems, although it has limitations
with respect to the sample size and the number of features.

2 constructing the graph
We are given a set of vectors x1, x2, . . . , xn, where xi ∈ Rd. The corresponding graph
should have such property that close points should have edges. If the graph is weighted
then the way of assigning the weights should be chosen. The common ways of assigning
the weights are:

• Fixing a threshold σ and set wi,j = 1 if
∣∣∣∣xi − xj

∣∣∣∣ ≤ σ, 0 otherwise.
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• Gaussian distance wi,j = exp
(
−||xi−xj||2

2σ2

)

• Euclidean distance wi,j = ||xi − xj||

In the paper, a more sophisticated approach is presented. For each data point, a vertex is
added. Each vertex has weighted degree di = ∑j wi,j and weights between the vertices wi,j
are constructed in order to minimize the following function:

f (w) = ∑
i
||dixi −∑

j
wi,jxj||2 (1)

The idea is to minimize the average weighted distance of the point to its neighbors.
If all weights are one then we compare the point with its average value of the neigh-
bors. However weights bring flexibility to the neighboring nodes and allow them to
differ in different directions from the point. It seems more flexible way of constructing
graph.

The intuition behind (1) is the following. Suppose that there is a function g : Rd → R

that assigns value to vectors as yi = g(xi) and that we know both the weighted graph
and the label of all vectors but one, yi. One natural guess is indeed a weighted average
of all its neighbours:

ŷi =
∑j wijxj

∑j wij
=

1
di

∑
j

wijg(xj)

and we could measure the quality of this graph by the sum of the square of errors:

Eg = ∑i

(
yi − 1

di
∑j wijg(xj)

)2

But we do not know the labels1 so we use our guess instead. We also do not know g, hence
we replace it by a family G of simple functions, coordinate wise identity for instance (that
is, g(k)(xi) = xi,k) and we minimize the sum of all errors:

∑
g∈G
Eg =

d

∑
k=1

∑
i

(
g(k)(xi)−

1
di

∑
j

wijg(k)(xj)

)2

=
d

∑
k=1

∑
i

(
xi,k −

1
di

∑
j

wijxj,k

)2

= ∑
i
||xi −

1
di

∑
j

wijxj||2

1 at least not all of them.
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Because wij
di

leads to non-convex problem, we multiply every term by d−
1
2

i to get (1).
At this point, we ask ourselves some questions about the family G. Could we weight
each of its function according to some prior knowledge about which features are impor-
tant? Could we use more that d functions, for instance g(k)(xi) = xi,kxi,k+1? And in
supervised classification problem, should not one of the function use the label informa-
tion2?

To avoid the zero solution, the authors introduce a constraint on the weighted degrees,
namely di > 1 and call graphs constructed by this way hard graph. It seems to us that
hard version of the graph is not the best solution for some datasets. The reason is that the
level of connectivity depends on how are the clusters formed. If there are many outliers
then some of the nodes are isolated and we should provide the possibility to handle these
cases.

α-soft graph is the relaxation of the hard graph, where total sum of the weighted degrees
can be less than αn

∑
i

(
max (0, 1− di)

2
)
≤ αn (2)

The choice of the α can make the algorithm faster, more flexible. We can see from classi-
fication results3 that for 7 out of 9 datasets α-soft version with α = 0.1 outperformed
hard version in accuracy and time. Possibly simple clustering can give measure of
how α should be chosen. If there are many small clusters then smaller α can be cho-
sen.

3 concrete implementation
3.1 Hard graph

To find the weights of the hard graph, we need to minimize f (w) = ∑i ||dixi −∑j wi,jxj||2.
If we let L be the Laplacian matrix of the graph and X the n by d matrix representing our
set of vector, we can rewrite f as f (w) = ||LX||2F where this Frobenius norm is defined
as ||M||2F = ∑i,j M2

i,j. L is linear in the weight and the problem is therefore quadratic.
But for the purpose of numerical optimization, we would like to formulate it in term of
Euclidean norm.

To do this, let introduce some notations. Over n vertices, there are m = (n
2) possible edges.

Let U be the signed n by m incidence matrix such that if edge e = (i, j) exists, Ui,e = 1

2 It is straightforward because it must also returns a value for unknown instances.
3 Showed in Table 2 of the paper

3



and Uj,e = −1. If we define W to be the diagonal matrix of weights, we can write L =

UWUT. Furthermore, letting xk be the kth column of X, we define the auxiliary quantities
y(k) = UTxk and Y(k), the matrix whose diagonal is y(k) and zero elsewhere. Armed with
this, we can rewrite the minimization problem as:

f (w) = ∑
i
||dixi −∑

j
wi,jxj||2 = ||LX||2F

=
d

∑
k=1
||Lxk||2 =

d

∑
k=1
||UWUTxk||2

=
d

∑
k=1
||UWy(k)||2 =

d

∑
k=1
||UY(k)w||2 = ||Mw||2

where M is defined by block as

M =




UY(1)

...
UY(d)




M is a dn by (n
2) matrix, meaning it has Θ(dn3) elements. Therefore, solving this prob-

lem is potentially computationally heavy. Yet we hope that our vectors lie on some low
dimensional manifold in a way that they do not have too many close neighbours. In fact,
it is proved in Theorem 3.1 of the paper4 that graphs found by this process have at most
d(n + 1) edges (or equivalently average degree at most 2(d + 1). We exploit the fact that
solution are sparse build it incrementally.

Indeed, naively, we would construct UK—the incidence matrix of the complete graph—,
the corresponding MK and then solve minw f (w) = ||MKw||2, subject to di ≥ 1. Calling
the Lagrange multipliers z, the associated Lagrange function is:

ΛK(w, z) = ||MKw||2 − zT(AKw− 1)

where AK = |UK| and d = AKw.

Instead, we start by choosing a random subset of edge, build the corresponding U and M,
and solve minw ||Mw||2 using the quadprog function of MATLAB. If some edges weights
become zero, we remove them. We then need a way to know whether we have found a
feasible solution of the complete problem. Such solutions must satisfy the Karush-Khun-
Tucker conditions. Especially, ∀i, j ∂ΛK

wi,j
≥ 0. Wherever it is not the case, we update

U and M with these missing edges and solve again until we cannot add edges any-
more.

4 the proof is presented in section 4 on page 6.
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To gain some confidence in our code, we generate a small artificial dataset (n = 22 and
d = 3) and solve the minimization problem either directly or with this iterative procedure.
It produced weights vector w1 and w2 that were consistent in the sense that ||w2−w1||

||w1|| was
less than 0.1%. In Figure 1 on page 9 is another illustration in dimension 2. Let say
that the x axis is the age of individuals, y axis their income and that the color indicates
their class: whether they will default on a loan5. The width of the edges represents
their weights and we notice that, whereas there are two clusters, there are edges between
them. Furthermore, one can prove that in dimension 2, the graph obtained is always
planar.

3.2 α-soft graph

In the case of a soft graph, the constraint Aw ≥ 1 is dropped in favor of η(w) =

||max (0, 1− Aw)||2 ≤ αn as introduced in (2). η(w) indicates how much weighted de-
grees are smaller than 1 and because f (w) is always improved by reducing all weights uni-
formly, a α-soft weights vector satisfy (2) with equality, that is η(w) = αn.

Let the optimization problem be

min
w
{ f (w) + µ · η(w) : w ≥ 0} (3)

where µ ∈ R+ controls how much emphasis we put on the degree constraint. When
µ = 0, we only optimize f (w) and therefore set w = 0. As µ goes to infinity, we are
increasingly concerned by making sure that Aw = 1 (or in other words, η(w) goes to
zero). Furthermore, for any µ, if w is a solution to (3), it is a solution of an α′ = η(w)/n-
soft graph. The strategy is then to fix an initial value of µ, solve (3) and adjuste µ to bring
α′ arbitrarily close to the α we want.

The paper then claimed that (3) is equivalent to minimizing L defined below and that is
a non negative least square problem. But we only manage to write as another quadratic
program:

L = min
w,s
||Mw||2 + µ||1− Aw + s||2

= min
w,s

wT(MT M + µAT A)w + µsT IT Is + µ
(

1− 21T Aw + 21Ts− 2wT ATs
)

= min
y

yT
(

MT M + µAT A −µAT

−µA µI

)
y− 2

(
µ1T A
−µ1T

)
y + µ1T1

= min
y

yT Hy + f y = min
y

Λ(y)

5 As no legend is provided, the reader can choose the colors interpretation that best suits its own age.
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where y is the m + n vector
(

w
s

)
≥ 0.

As there are no constraint and thus no Lagrange multipliers:

dΛ
dw

= 2(MT M + µAT A)w− 2µAT(s + 1)

From this point, we are back in the previous case with only minor modification to the
quadratic program and its derivative. We were thus expecting that our existing code
would perform as well. Yet it was definitely not the case. The issue was that although
many edges made the derivative negative, none of them were close enough to zero to be
removed. But we cannot simply add them because of the sparsity constraint. At the end,
we renounced to compute α graph, even if the paper suggests that running would have
been greatly improved.

4 sparsity of the fitted graph
The authors find examples of sets of vectors for which the fitted graph solution is not
unique (this happens when there exists certain symmetry among the vectors). However,
no matter on the uniqueness, they prove that all of the graph solutions as defined will be
sparse. More precisely, the theorem states that for any set of vectors x1, x2, . . . , xn ∈ Rd

there exists a solution to both of the hard and soft constraints that has no more than
n(d + 1) edges, which implies sparsity whenever d is small enough compared with n, as
it is the case in many machine learning applications6.

The proof is by contradiction. Let us recall that we are minimizing a quadratic program
of the form ||Mw||2, and let us assume that we found a solution w. If we assume that
the number of edges in a hard or α-soft graph fitted to the given vectors is greater than

n(d + 1), say q, then there exists a vector of weights w∗ such that
[

M
A

]
w∗ = 0 and w∗

has non-zero values restricted to these q edges.

This, however, creates the contradiction, since using such a vector w∗, we can now
create a weights vector, that is also solution to the graph problem, but will have less
edges. Namely, we can take w′ > 0 by finding suitable r ∈ R such that w′ = (w +

rw∗) and at least one of the edges from w is zeroed in w′. Such w′ satisfies our
hard quadratic problem, since Mw′ = M(w + rw∗) = Mw + rMw∗ = Mw. More-
over, since Aw′ = A(w + rw∗) = Aw + rAw∗ = Aw, it also satisfies any degree con-
straints.

6 But not always. For instance, genomic dataset often have few samples with thousand or even million of
features.
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Thus, the solution as defined can have at most n(d + 1).

5 experimental results
Constructed graph can be used in solving classification, regression and clustering prob-
lems. After calculating the Laplacian of the constructed graph, we can solve classification
problem of the following form:

xT Lx = ∑
i,j∈E

wi,j(xi − xj)
2 (4)

(xi)i∈{1,...,n} denotes classes of instances, some of them which are known. The idea is
to set the same labels to the close points, by solving another quadratic problem and
hence minimizing the energy dissipated by the graph seen as an electrical network. This
is the formula for binary classification task. It seems that there should be some limit
on the number of training and test samples. Some of the clustering points can have
small proportion of labels that can lead to low accuracy. Hard clustering can potentially
alleviate this problem, because it can make bigger clusters where unlabeled points will
have more labeled neighbours.

Classification experiments were held for benchmark datasets with small amount of di-
mensions and sample size. Results were compared with SVM, Full Bayes Classifier, Hill
Climbing Learning Algorithm, KNN, Averaged One Dependence Estimator. For many
of the datasets the performance was on the best in case of accuracy. For two datasets
Ionosphere and Sonar the accuracy was the highest. Actually the dimensions of these
two datasets were the highest. In such cases, simple Euclidean distance suffers from
the curse of dimensionality whereas this type of distance, which takes into account
multiple points, has advantages. Results on our own four datasets are shown in Ta-
ble 1.

Dataset n d SVM Graph Time (seconds)

Liver disorders 172 8 60.58 % 68.00 % 276
Diabetes 300 10 62.25 % 72.33 % 3423
Breast cancer 300 12 55.58 % 96.60 % 15499
Twitter 300 13 82.50 % 72.66 % 1855

Table 1: Accuracy and training time of this method on four dataset compared with SVM

As we can see the accuracy for 3 out of 4 datasets was better than SVM. Breast cancer
dataset showed big improvement in the accuracy. There is a huge gap between the values
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in one feature and the others. At the same time twitter dataset is nearly binary and
the performance of SVM is better. We can’t compare SVM and Hard-graph method in
sense of the computational time. Moreover the biggest deficiency of the method is in the
limitations on the sample and feature size. As we saw previously, the amount of potential
edges grows as O(n2), then the number of variables increases fast. Dimensions on the
data is restricted as well.

6 conclusion
Our project deals with the paper on fitting a graph to a set of vectors. The purpose of
such an idea is both theoretical and practical. From theoretical side, it is of interest to
find a graph that exhibits nice combinatorial properties, like sparsity or planarity in two
dimensions. Being able to assign such a graph to any set of vectors provides insights
about the vector-set. From practical side, working with the fitted graph can help solving
machine learning problems on the given vector set. In particular, we have experimented
with classification. The results are promising, having better accuracy compared to other
methods in many cases. This approach has the further advantage of not requiring any
parameter tuning.

However, described approach of fitting graph to vectors is not ideal by any means. The au-
thors leave many questions open with regards to the properties of such graph. For exam-
ple, uniqueness is not guaranteed, although the authors conjecture that it holds with high
probability up to a small perturbation to break potential symmetry. More importantly, la-
bels are not incorporated into building of this kind of graphs. One issue inherent to the
approach is that adding a single node requires recomputing the whole graph, a disadvan-
tage compared to some of the existing approaches. We also discussed the disadvantages
in regard to the sample size and the number of features.

Nevertheless, as we also tested in part, this approach can be practical when solving cer-
tain types of classification, regression and clustering problems.
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Figure 1: Small example of hard graph construction.
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The rise of location aware devices means that an increasing portion of online user generated
content carries geographical information. We describe how these spatial information can be
combined with the traditional tagging system to discover meaningful relations. Extracting
metadata of localized photos from Flickr website, we indeed try to uncover association rules
between locations and tags. This allows us to tackle three questions: find where a given tag
appears significantly, select tags that best characterize a given location and retrieve which
locations generate the more interest. We provide answers for the city of San Francisco by
filtering tags and computing spatial statistics. Yet much remains to be done: validate these
results, be less prescriptive but more data driven and extend to different scales and others
dimensions (time, users).



1 I N T RO D U C T I O N

A common way of organizing information on websites it to rely on tags provided by users.
Although these words are chosen freely, we do not expect them to be arbitrary and thus
hope to extract limited semantics from them. In this work, we focus on tags associated with
geolocated photos extracted from Flickr1. Using this crowdsourced set of (tags, location) pairs,
we investigate three problems:

• Given a tag, find the places in a city where it is significantly concentrated.

• Conversely, given a location, find the tags that best describe it compared with other
locations of similar scale.

• Finally, find those places that generate the most interest.

The first answer could be applied in a touristic context. When arriving in a new city, a
person interested in baseball or streetart could find relevant places according to the experience
of inhabitants and previous visitors. The second answer could be used by Flickr to suggest
relevant tags when users upload photos. Consequently, more sensibly tagged photos allow
more relevant search results and improve the website user experience. The last answer could
for instance be the first step of an automatic travel guide that select points of interest in a
city or a region.

Other applications may include inferring missing information (like location or time of the
day) from the tags or create tailored visualisation.

2 S E T T I N G

2.1 Description of the Dataset

Using the Flickr API, we downloaded metadata from every photo satisfying a set of criteria:
they contained at least one tag, they were located, they have been uploaded after January 1st,
2008 and they belonged to a predefined rectangular region. Most of the work was done on a
set of around 780 000 photos in the city of San Francisco, but we also got data from a part of
California2 and over the whole United States.

More precisely, in addition to tags and location, we know when each photos was taken and
uploaded, by which user and what title was given to it (the title was not used except when it
contained hashtags, which were converted to tags). Thus a typical data point looks like this:

1 http://www.flickr.com/
2 from San José to Reno
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loc : [-122.392501, 37.77515],

taken : "2008-03-24 14:55:40",

user_id : "37417902@N00",

tags : ["sanfrancisco", "california", "bridge", "chinabasin"]

title : "sf 4th st bridge 8"

2.2 Uncertainty of the data

This retrieval process was naturally not perfect. In addition to some API calls returning
strange results, the casual nature of the data explains their inherent noise.

• User id are subject to caution since nothing prevents people to upload photos on behalf
of others. It would require serious effort to detect it but one may expect it is rather
uncommon. Moreover, the mere fact that the upload take place still denotes a relation
between the user and the photos.

• While timestamp issued by mobile phones are likely to be correct, as their internal clock
is synchronized by internet, this may not always be the case for dedicated cameras.
More concerning than usual drift of low quality clock is the situation of tourists coming
from different timezone. Yet as I could not think of any simple solution to that problem,
I just ignored it and carried on.

• To ensure the quality of the localization, I restricted myself to photos whose precision
is deemed “street level” by Flickr. The potential problem is that it would cost an extra
request to know whether this location was given by GPS (in which case the camera
position is accurate) or by the user at upload time. In the latter case, in addition to the
general imprecision of the method, it is ambiguous whether this location refer the place
where the photo was shot or the position of the photo’s subject3.

• Finally, without additional request, the tags obtained are those normalized by Flickr.
This normalization is not bijective but it is assumed that two tags with the same nor-
malized form were close in the first place.

Overall, these restrictions are not really problematic. Yet there is another one that is not
specific to a given field. Users have the possibility to upload photos by batch and assign them
common location and tags. In some case, this could skew the corresponding distributions.
Take the tag 14thstreet as an example. One user have uploaded more than 3 500 photos at one
corner street during a marathon whereas only a handful of others users have employed this
tag, which is therefore not as popular as the raw number would suggest. To alleviate this
situation, we performed the following preprocessing step.

First, we duplicated the “tags” field of every photos. Then, for each user u and each tag t, we
computed the distribution of photos tagged t by u and removed the tags from the photos that

3 Think of a bridge taken from a nearby hill.
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appeared more than T = 120 times in the same place (the same cell of the 200 discrete grid)
in the same time (2 weeks interval). With such threshold, it removed around 20% of all tags
and it somewhat modified the list of top tags but with no clear pattern. Yet tags with very
low entropy like 14thstreet did not appear anymore because they lost most of their support. A
better way to deal with that issue could be to weight tags by the number of their users but it
would computationally more expensive.

2.3 Statistical exploration

The first thing was to look at the tags to get a sense of them. In San Francisco after the
preprocessing, there was a total of 4 977 625 occurrences of the 145 242 unique tags. But
their distribution varies widely, between the most popular one, sanfrancisco, used 373 427
times and the 101 361 one that are used less than 5 times. Some of them are shown in
Table 1 but a more synthetic visualization is presented in Figure 1a on page 7, where we can
see that like words in a written documents, tags follows a power law.

First 15 tags between 100 and 1000 after 90 000

sanfrancisco 2013 sfgiantsfan
california pacific rolexbigboatseries
iphoneography february proshowgold
square foundinsf neutraface
squareformat dolorespark natur
instagramapp japaneseteagarden lusty
unitedstates boat lightousetender
sf 5k jennyholzer
usa national img0562jpg
ca djguyruben
san cruise cutebaby
francisco above cardamine
goldengatepark july2009 californiaproduce
2010 effortlesslyuploadedbymyeyeficard aroundwithb1
iphone dayofdecision aquateenhungerforcemooninite

Table 1: A sample of San Francisco tags, depending of their rank.

After making these observations, we decided to consider only tags with enough support,
both to ease the computational effort and to avoid outliers. For each tags, we computed three
simple metrics: total count, distinct users count and time span. Using the three thresholds
(150 photos, 25 users, 500 days), we kept only 1 874 tags. It may seem quite restrictive but
they still cover 68.6% of all occurrences and these thresholds can be changed later4.

4 For instance, with (20, 2, 0), we get 12 959 tags and 84.4% coverage.
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We can then conduct a similar analysis over the locations in which photos appear. Because
of their large number, it was not convenient nor readable to display them individually. There-
fore, we discretized space as a regular grid of size 200 by 200. A natural way of visualizing
them is to draw a heatmap (Figure 1c on the following page). We notice again that they are
far from being uniformly distributed and that some neighborhoods are more popular than
others. More quantitatively, plotting number of photos of each location as a function of their
rank (Figure 1b on the next page), we notice that it first follows a power law and after some
point, a more abrupt one. Moreover, the same phenomena occurs for other grid size, albeit
with different α coefficients. Despite this similar behavior, it was more tricky to explicitly
exclude parts of the city.

6



100 101 102 103 104 105

100

101

102

103

104

105

rank

t
a
g

c
o
u
n
t

San Francisco

San Francisco (cleaned)

California

USA

(a) Tag distribution log-log scale over three regions of differ-
ent scale.

100 101 102 103 104

100

101

102

103

104

rank of cell

p
h
o
t
o

c
o
u
n
t

p
e
r

c
e
ll

200 grid

100 grid

40 grid

(b) Spatial distribution of photos over three grids with differ-
ent granularity.

(c) Photos count in logarithmic scale (the darker, the more photos).

Figure 1: Various ways of visualizing content distribution.



Let us return to one of our original question, find which tags describe a given location. The
first approach would to filter this 1 874 tags to keep only those that are enough concentrated
at one position and reject those that too uniformly distributed. After that, it would simply
be a matter of returning those that appear in the place of interest. An example of this two
kind of tags are museum and street. As shown in Figure 2, museum photos are mostly located
around five or six points whereas street is more diffuse. But instead of looking at a map, we
want a numerical statistic that allow us to distinguish between this two cases.

Figure 2: Red dots denote photos tagged museum while blue ones are street.
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3 M E T H O D S

..1. 2. 3... g.
g + 1

.............................

g2
Let first define some notation. As mentioned before, the city is di-
vided in a g × g grid made of rectangular cells 1 through g2 (like pic-
tured on the right). For a cell i, let b(i) be the total number of photos
in ith cell 5, B = ∑i b(i) the total number of photos and b f (i) = b(i)

B
the frequency of each cell. For a tag t, we define in the same manner
t(i), T and t f (i), this time considering only photos which have tags
t.

With these frequencies we can compute entropy. Let

H(t, g) = − 1
2 log g

g2

∑
i=1

t f (i) log t f (i)

be the entropy of tag t on a grid of size g. The normalization factor ensures that regardless of
g, the values will range from 0 (all photos in the same cell) to 1 (uniform distribution). Tags
with extremal values are presented in Table 2 on page 11 for three grids: 200 × 200 (each
cell is 80 by 70 meters long, less than a block), 80 × 80 (200 × 180 meters, slightly more that
a block) and 20 × 20 (800 × 700 meters, maybe a district). We notice that the lowest values
relate to specific location like museum while highest one are generic. Whereas g = 200 and
g = 80 yield comparable result, it is no more the case for g = 20. In particular high valued
tags become even more generic (sky, dog, . . . ).

To further differentiate tags that are highly concentrated, we can compute the Kullback
Leibler divergence of their distribution with the one of all the photos. For that, we define

Dg(t||b) =
−1

log minb f (i)>0 b f (i)

g2

∑
i=1, b f (i)>0

t f (i) log
t f (i)
b f (i)

This time, values range from 1 (when all the t photos are in the cell where there are the fewest
total photos and thus are maximally distinct) to 0 (for t = b, which is not possible). Again
extremal values are shown in Table 3 on page 12. It also differentiates between the two kinds
of tag but compared with entropy, it seems more robust to change in the grid dimensions as
the three rows shows roughly the same set of tags. Weirdly enough, there is also a semantic
shift for position specific tags. Whereas those picked by entropy were mostly buildings, here
they relate more to recreational areas like parks.

This two statistics are interesting but they have one major drawback, they give a single
value for each tag. While this is convenient for ranking them, it loses all the information
about their position. That why we finally use the Kulldorf spatial scan statistic[4]. Let Ri,w,h
be a rectangular region defined by its bottom left cell i, its width w and its height h as the
following set of cells:

Ri,w,h = {i + k + lg, k ∈ J0, . . . , w − 1K, l ∈ J0, . . . , h − 1K}
5 The so called background, hence the notation.
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For a given R, what we will now call its discrepancy with respect to tag t is

d(t, R) =

t f (R) log
t f (R)
b f (R)

+ (1 − t f (R)) log
1 − t f (R)
1 − b f (R)

if
t f

b f
≥

1 − t f

1 − b f
and t f ≥ T

0 otherwise

and we recognize the Kullback Leibler divergence restricted to R and its complementary. T
is a threshold ensuring that we consider only region with enough support to be significant.

To compute it, we implemented the exhaustive method described in [1, Algorithm 3] with
two modifications. First, letting w and h go from 1 to g, there are g2 · g · g possible regions.
But to speed up computations and because we did not want to get regions covering a large
portion of the city, we restricted their maximum size. Then, instead of returning the most
discrepant region, we maintained a list of the top K ones. Like before, it is informative to look
at Table 4 on page 13 to see which tags get high and low values (over all their regions). This
time, the values are not normalized between different grid size hence only the relative order
is meaningfull. Again tag with high discrepancy are related with locations such as parks. On
the other side, tags with low discrepancy are more difficult to interpret because they mostly
do not refer to geographic features.
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g = 200 g = 80 g = 20

Lowest entropy

111minna .046 theindependent .008 museumofmodernart .002
billgraham[] .052 dnalounge .012 yerbabuena[] .003
rodin .053 franklloydwright .022 californiapalace[] .003
teagarden .058 greatamerican[] .022 museemecanique .006
dnalounge .063 californiapalace[] .025 cupidsspan .007
bottomofthehill .064 bottomofthehill .025 pier45 .007
cafedunord .067 saintspeter[] .026 missiondolorespark .008
theindependent .069 rodin .034 theindependent .010
franklloydwright .070 honor .035 clarionalley .011
warfield .074 billgraham[] .035 asianartmuseum .012
greatamerican[] .075 asianartmuseum .038 fairmont .012

Highest entropy

usa .688 color .728 sunset .751
sf .696 northerncalifornia .729 dog .753
instagramapp .700 square .735 purple .755
square .700 instagramapp .736 nikon .756
squareformat .700 squareformat .736 sky .757
iphoneography .703 iphoneography .737 blue .766
unitedstates .703 iphone .737 d200 .767
iphone .720 california .738 color .769
foundinsf .724 sanfrancisco .744 northerncalifornia .773
california .726 gwsf .766 gwsf .812
sanfrancisco .738 foundinsf .803 foundinsf .825

Table 2: The tags with lowest and highest entropy for three different grid size (the abbreviated ones are
billgrahamcivicauditorium, californiapalaceofthelegionofhonor, yerbabuenacenterforthearts, greatamer-
icanmusichall and saintspeterandpaulchurch).
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g = 200 g = 80 g = 20

Highest divergence

lakemerced .587 lakemerced .568 grandviewpark .506
grandviewpark .563 grandviewpark .554 lakemerced .485
hunterspoint .533 hunterspoint .520 sterngrove .484
sterngrove .532 westportal .514 hunterspoint .477
westportal .528 sterngrove .512 fortfunston .459
catamaran .524 chinabeach .502 chinabeach .450
dubocepark .519 dubocepark .484 westportal .446
buenavistapark .518 glenpark .482 nfl .441
chinabeach .518 buenavistapark .477 candlestickpark .440
ccsf .517 candlestickpark .477 glenpark .432
glenpark .508 fortfunston .471 sfsu .430

Lowest divergence

san .058 san .032 squareformat .011
ca .058 ca .030 2011 .011
instagramapp .055 instagramapp .030 square .011
squareformat .055 squareformat .030 iphoneography .011
square .054 unitedstates .030 francisco .010
iphoneography .053 square .030 san .010
unitedstates .053 iphoneography .029 unitedstates .009
usa .046 usa .026 ca .008
sf .042 sf .021 sf .006
california .021 california .011 california .004
sanfrancisco .011 sanfrancisco .006 sanfrancisco .002

Table 3: The tags with lowest and highest Kullback Leibler divergence for three different grid size.
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g = 200 g = 80 g = 20

Highest discrepancy

grandviewpark 7.493 grandviewpark 7.113 grandviewpark 6.521
sterngrove 7.208 sterngrove 6.338 sterngrove 5.998
local 6.881 candlestickpark 6.318 fortfunston 5.924
alcohol 6.666 dubocepark 6.152 candlestickpark 5.638
dubocepark 6.467 pier7 6.072 bayareadisco[] 5.484
yoda 6.467 nfl 6.052 nfl 5.411
coronaheights 6.374 fortfunston 5.948 chinabeach 5.392
performer 6.374 bottomofthehill 5.917 glenpark 5.338
circus 6.371 slims 5.804 sfsu 5.326
candlestickpark 6.285 westportal 5.752 westportal 5.258
bernalheightspark 6.158 bayareadisco[] 5.732 californiapalace[] 5.225

Lowest discrepancy

instagramapp 0.013 street 0.062 logo 0.054
squareformat 0.013 sign 0.062 friends 0.053
square 0.012 lofi 0.061 sign 0.053
iphoneography 0.012 hair 0.059 yellow 0.052
sf 0.009 hipstamatic 0.059 bayarea 0.051
xproii 0.008 food 0.059 shozu 0.051
sierra 0.007 motionblur 0.057 party 0.050
california 0.004 large 0.056 mirror 0.050
rise 0.003 2009 0.056 hipstamatic 0.050
amaro 0.002 nashville 0.056 purple 0.049
sanfrancisco 0.001 bayarea 0.055 truck 0.048

Table 4: Tags with lowest and highest discrepancy for three different grid size (the abbreviated ones are ba-
yareadiscorymuseum and californiapalaceofthelegionofhonor).
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4 E X P E R I M E N TA L E VA L UAT I O N

With this last statistic, we will now see how we can answer the three initial questions, albeit
not optimally.

4.1 Tag positioning

To find where a tag appears, we simply compute its discrepancy over all regions that satisfy
some size constraints and we keep track of the K ones with the highest discrepancy. When
this is done, we merge some of the overlapping regions and discard the others. Namely, we
rank region by discrepancy, start from the top one, merge it with its two highest neighbors
and remove the others ones. Then we move to next cluster until we have visited all regions
once.

While this is conceptually easy, the main drawback is the sensitivity to the scale of the grid
and even for the same grid, the choice of parameters. Figure 3 on the following page show
result for museum and Figure 4 on the next page for goldengatepark. Because they cover area
of small and larger size, we see that the appropriated grid is different. The problem is that
we need to find the correct one before starting the computations.
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(a) g = 200, K = 1000, T = 130, min = 2, max = 5 (b) g = 80, K = 1000, T = 250, min = 1, max = 4

(c) g = 200, K = 1000, T = 250, min = 2, max = 5 (d) g = 20, K = 1000, T = 350, min = 1, max = 1

(e) g = 200, K = 1000, T = 300, min = 2, max = 2 (f) g = 20, K = 1000, T = 350, min = 1, max = 4

Figure 3: Photos with tags museum are blue dots and red rectangles represent high discrepancy regions. g is the subdivision
of the grid, K the maximum number of regions before merging, T the minimum number of photos in a region to be
considered, and min and max are the size constraints of the regions in number of cells.

(a) g = 20, K = 1000, T = 250, min = 1, max = 5 (b) g = 80, K = 1000, T = 200, min = 1, max = 4

(c) g = 20, K = 1000, T = 250, min = 1, max = 6 (d) g = 200, K = 1000, T = 100, min = 3, max = 7

(e) g = 20, K = 1000, T = 250, min = 1, max = 7 (f) g = 200, K = 1000, T = 200, min = 1, max = 5

Figure 4: Same as Figure 3 but for goldengatepark.
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4.2 Location describing

We can also use discrepancy to describe a location as follows: we perform the merging process
just presented for all supported tags. For each of them, we will thus obtain a few regions
with an associated scalar value. Given a query region, we go through this list and return
matching tags, sorted by discrepancy. Screenshots of a working demonstration are displayed
in Figure 6 on the following page. One issue they do not show is that the list of results is
sometimes very sensitive to the rectangle selected. But they exhibit the another one; this
list can be very long and it would be desirable to limit it (for instance in Alcatraz (6c), return
only tags with discrepancy above 3). The matching process can also be improved, maybe by
scaling the discrepancy by the overlapping area between the query and the tag regions.

4.3 Map covering

Finally, as a proxy for finding interesting locations, we tried to pave the map with suitable
tags. More precisely, we selected the highest discrepancy region of each tag, ranked them
and return the top ones. Result is shown in Figure 5. In its current form, the visualization
quickly become unreadable if we allow overlapping tags. But there are more fundamental
issues. Namely, because it was computed with the values from the 200 × 200 grid and regions
smaller than 4 cells at most, it misses larger areas like the Golden Gate Park. Moreover,
discrepancy is an arguable criterion of interest. Even if at first look, it seems to return
mostly relevant locations, it lacks flexibility and will always yield the same result, regardless
of the user typology and its preferences.

Figure 5: The 20 more discrepant tags are their characteristics location.
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(a) San Francisco Zoo, where Google Map indeed re-
ports the existence of a “Penguin Island”.

(b) California Palace of the Legion of Honor, a museum
with many Auguste Rodin’s sculptures.

(c) Alcatraz Island, aka “The Rock”, home of an aban-
doned prison.

Figure 6: Description of three points of interest in San Francisco.
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5 C O N C L U S I O N & F U T U R E WO R K

By summarizing what we have done so far, we will be able to see which limitations can be
addressed in further work. After extracting photos metadata from Flickr and exploring their
location and their tags, we computed some statistics about them and notably the discrepancy
of the most supported tags. We then use this information to highlight various relationships
between tags and locations. But how can these results can be improved?

The first point to look at is the data. As mentioned on page 4, they come with some noise
and we expect the results to be more relevant if we manage to clean them. Yet it remains
to be seen if it is worth the extra effort. A simpler direction would be to increase their
amount. This can be done by crawling photos from others cities, to see if the same methods
produce the same results or if working only with San Francisco have introduced some bias.
Another approach would be to use more diverse sources like instagram, foursquare or any
other social networks that allows users to share localized and tagged contents.

The second limitation that arise from focusing on a single area is that we were not con-
fronted enough with one fundamental issue of spatial analysis, the modifiable areal unit
problem[3], which states that statistical measurements can be profoundly affected by the
choice of the spatial partition and its characteristics size (in our case, the grid and its cells di-
mension). It is an open question whether the current approach can simply be tuned to tackle
different area like states, countries or even the whole world, or if it needs radical change and
scale invariant statistics.

A related issue is that the presented approach comes with many parameters and thresh-
olds. That would be fine if they encode some prior knowledge but the truth is, they were
chosen empirically. Indeed, the problem is mostly unsupervised. For instance, except for
specific tag like the name of buildings, most of them can be found in several locations. Like-
wise, places can be described by many tags, maybe of various relevance but with no clear
cut. Finally, finding interesting locations is rather subjective and, depending of the chosen
criterion, can yield diverse results. The rather rigid grid division is therefore quite limited,
not least because not all locations are rectangular! It may thus be more appropriate to try
some unsupervised clustering methods, for instance based on the Euclidean norm in the
case of the photos locations or drawn from natural language topic modeling approaches in
the case of tags[2].

Even with this lack of definitive results, it would be helpful to have a way to evaluate
them. One way could be to generate artificial data from which we know precisely what
should be found inside, but it would again require some assumptions of our part. We can
also create hand picked ground truth by manually annotating tags and locations, as in
[6]. To cope with ambiguity, it would be even better to aggregate evaluations from several
individuals6. An easier alternative would be to manually extract famous landmarks from
existing tourist guides and assess precision and recall of the method.

6 But also more time consuming, although this may be presented as a game, like GeoGuessr: http://geoguessr.
com/.
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Finally, whereas photos come with four kinds of informationtags, location, user and
timewe only work with the first two and it would undoubtedly be more interesting to use all
of them. Let us try to list systematically what we can do of it.

First, by focusing on a single one and building a profile using the rest, we may devise a
similarity measure and use it to perform clustering. In the case of users, it may divide
between wealthy and not, young and old, male or female [5], tourist or inhabitant or richer
category like family with kids and traveler of a package tour. As said above, tags can be
grouped into common topic7. Lastly, although times and locations are subset of R and R2

and as such already have a natural metric, they carry additional semantic that we would
like to exploit. For instance, we assume that by periodicity, Sundays in 2008 and 2013 share
common patterns although they are far apart in time. Likewise, maybe locations in front of
the water or that consist of park have similar characteristics.

Then we should consider pair of concepts. The present work deals with tags ↔ locations
in both directions, thus there are (4

2)− 1 others to look for: tags ↔ time, tags ↔ users, loca-
tions ↔ times, locations ↔ users and times ↔ users. Yet all of them may not be interesting
and we need to hierarchize our priorities.
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